KDON35000型空分装置操作规程 - 制度大全
制度大全 导航

KDON35000型空分装置操作规程

编辑:制度大全2020-01-29

1.目的和适用范围

规定了KDON-35000型空分装置(包括空气预冷系统、空气净化系统、空分精馏系统和提氩系统)的作业程序和作业方法。

适用于35000m3/h制氧机组运行岗位作业人员。

2.引用/支持性文件

2.1《文件和资料控制程序》(QCP/703-05-01-2000)

2.2《质量体系文件编写导则》(QM/703JZ-05-01-01-2000)

2.3《技术规程编写细则》(QM/703JZ-05-01-02-2000)

2.4《操作规程管理办法》(QM/703JZ-05-01-04-2000)

2.5《设备使用、维护、保管管理制度》(QM/703JD-09-02-14-2000)

2.6《现场管理实施管理办法》(QM/703SJ-09-01-01-2000)

2.7《设备润滑管理制度》(QM/703JD-09-02-16-2000)

2.8《设备巡回点检制度》(QM/703JD-09-02-13-2000)

2.9《RIK100-4型空气压缩机操作规程》(QW/703RE-01-2000)

2.10《仪表压缩机操作规程》(QW/703RE-06-2000)

3.岗位职责

3.1负责本岗位设备的正常运行,完成本岗位生产任务和经济技术指标。

3.2负责本岗位所有设备的操作、维护、巡检和点检工作。

3.3负责本岗位的安全、防火、保卫和文明生产工作。

3.4作好原始记录和信息反馈。

3.5执行公司、气体公司各项管理条例、规定等。

4.作业过程

4.1启动前的准备

4.1.1空气预冷系统和分子筛吸附器的阀门状态

4.1.1.1检查确认以下阀门已关闭

a)空冷塔E07放泄阀:VEI27、VE07C和D;

b)空冷塔E07放气阀:VE07A和B;

c)水泵放泄阀:VEI06B和D、VEI10B、VEI10D、VEI10E、VEI11B、VEI11D、VEI12B、VEI12D、VEI12E;

d)氮水塔E60放泄阀:VE60C、VE60D;

e)分子筛吸附器R01和R02的阀门:VAG02A、VR01A/B/C、VR02A/B/C;

f)自动疏水旁通阀:VNR06A和VNR06C;

g)蒸汽管道上自动疏水旁通阀:VCB01B;

h)所有的解冻阀:(包括VAD01B、VAD03、VAD01A);

i)仪表气的放气阀:VAI01E;

j)水管放泄阀:VEI10F、VEI12F、VEI07B;

4.1.1.2检查确认以下阀门已打开

a)VNS01(用于冷箱充氮和低温泵的密封气系统)

b)水泵的隔离阀;

c)E60和E07上的LT和LI的隔离阀:VE07G/H/E/F/V、VE60A/B;

d)氮水塔E60冷却水进口隔离阀门VEI07A打开。

4.1.1.3启动前自动阀门的状态:

a)LIC1007、LIC1022、FIC1024、FIC1028处于手动(MANU)状态,开度为0%;

b)HIC1215开度为0%;

c)冷箱被隔离:HIC1296和PIC1213B开度为0%;

4.1.2空冷塔E07和氮水塔E60的状态

4.1.2.1通常,空冷塔E07内一直保持有水的,启动前液位要大于50%;

4.1.2.2在进行维修和E07空了的情况下,需在给塔加压前,重新通过水泵P62或P63灌入水使液位达到60%左右,但要注意防止泵转动;

4.1.2.3将进水管到氮水塔E60的隔离阀门打开,然后将LV1022设定值设定在50%,保证E60启动前液位达到50%左右。

4.1.2.4检查确认水泵系统水管中没有空气,特别是清洗泵过滤器后更要确保这一点;

4.1.3蒸汽加热器E08和电加热器E09状态

4.1.3.1蒸汽加热器最初阀门都处于关闭状态

4.1.3.2打开VCB01B;

4.1.3.3慢慢打开VVB03;

4.1.3.4当在VCB01B出口只有蒸汽,打开VCB01A和关闭VCB01B;

4.1.3.5当VVB03开度为100%时,蒸汽加热器已准备好,可以投入使用。

4.1.3.6电加热器进口阀门VNR04关闭。

4.1.3.7电工检查确认电加热器加热电阻丝完好,电加热器送电。电加热器准备投入使用。

4.1.4分子筛吸附器(R01/R02)状态

4.1.4.1大多数情况下,吸附顺序保持在上次停车时的状态,不需要特别调整。每次制氧机停车时,记录顺控状态是至关重要的,分子筛吸附器顺序紊乱,可能导致将CO2带入精馏塔内。

4.1.4.2当DCS停下来后,可能需要把分子筛吸附器阀门恢复到需要位置。

要注意:这一步骤应当在升压之前进行。因此,也就是在启动之前,用初始化按钮对顺控逻辑进行初始化;用容器选择按钮选择在线运行分子筛吸附器;用步骤选择按钮切入所需的顺序步骤。

4.1.4.3检查确认送到在线运行分子筛吸附器的空气输入和输出阀门已经打开,假如没有,则送气时,这些阀门将无法打开。

4.1.4.4检查确认顺序器处于OFF状态和步进(STEPBYSTEP)模式下。

4.1.5仪表气的准备

4.1.5.1在分子筛吸附器投入前,仪表气是由氮气管网或仪表压缩机通过VAI02和VAI01A/C或VAI01B/D供应的。操作见《RIK100-4型空气压缩机操作规程》中4.1.2.2和《仪表压缩机操作规程》。

4.1.5.2在分子筛吸附器投入使用后,仪表气由分子筛吸附器后的干燥空气提供。检查外部仪表气压力是否低于从分子筛吸附器出来的空气压力,假如低的话,VAI02可以一直开着。

4.1.5.3检查确认VAG13B关闭,打开VAG13A阀门给低温泵的密封气系统供气。

4.1.5.4在正常运行时,VNS01打开由氮气管网供应氮气。

4.1.5.5假如需要解冻空气,打开VAD01A(在这之前检查确认到低温设备解冻入口已关闭)。

4.1.6冷却开始前冷箱内阀门状态

4.1.6.1所有的手动阀门关闭:液氧VOL04A;液氧VNL03A;液氩VAX01A/B。

4.1.6.2冷箱的珠光砂处于氮气保护状态下,检查下面阀门的阀位和专用流量计:VNS03(FI6406)、VNS02A(FI6401)、VNS02B(FI6402)、VNS02C(FI6403)、VNS02D(FI6404)、VNS02E(DI6405)。

4.1.6.3主塔的节流阀应处于手动模式,开度为0%(FIC1606、FIC1607、FIC1608、FIC1601)。

4.1.6.4冷箱内所有自动阀门处于手动模式,开度为0%。

4.1.6.5阀门HCV1642和HCV1643关闭。

4.1.6.6塔上的所有吹除阀和取样阀门关闭。

4.1.7透平膨胀机D01/D02状态

4.1.7.1解冻空气入口VAG11A/B必须关上。

4.1.7.2增压机进出口阀门、膨胀机进口阀门关闭。

4.1.7.3膨胀机密封气由分子筛吸附器后干燥空气提供,在分子筛吸附器投入运行前,密封气系统无法投运,膨胀机油泵不得启动。

4.1.7.4就地检查油箱油标,确认油位在规定的范围内。

4.1.7.5在DCS上将润滑油加热器选择自动开/关状态。若油箱内油温低于25℃,通过控制系统,加热器自动接通;若油温升高超过30℃,加热器自动切断。

4.1.7.6用倒换把手选择待用的油过滤器。

4.1.7.7检查确认旁通阀HIC1541和HIC1546开度为100%。

4.1.7.8检查确认冷却水已备好,增压机后冷已准备投入使用。

4.1.7.9由DCS控制喷嘴。

4.1.8低温液体泵的准备

4.1.8.1液氧泵P01A/B和粗氩泵P10A/B的进出口阀门关闭。

4.1.8.2各低温液体泵的密封气系统投入使用。在密封气控制箱内将密封气压力流量设定好。

4.1.9液氧吸附器R03/R04的准备

4.1.9.1检查确认所有的阀门关闭。

4.1.9.2用步骤选择按钮将一台液氧吸附器的步骤选为低温冷却(COOL.DOWN)。

4.1.9.3检查确认加温氮气的隔离阀打开,确认电加热器E81处于备用状态。

4.1.10所有运转机械均具备启动条件。

4.1.11所有阀门开关灵活,安全阀和各调节阀经调试合格。

4.1.12计算机系统DCS运转正常,CRT显示准确,与实际相符。

4.1.13对冷箱内的容器和管道进行彻底的加温吹除,并经检测合格,所有气封点、透平膨胀机的喷嘴关闭。除分析和计量仪表外,所有通向指示仪表的阀门打开。

4.1.14空分装置的所有阀门处于关闭状态,膨胀机出入口阀门关闭。

4.1.15电气系统正常工作。

4.1.16供水系统正常工作,打开冷却水进、出口阀门。

4.1.17计器仪表性能良好,接通备用仪表空气,除分析和计量仪表外,其它仪表全部投入使用。

4.2启动操作

4.2.1启动空气预冷系统

4.2.1.1确认空冷塔所有阀门和水泵进出口阀门已打开。

4.2.1.2空压机排气压力大于0.4Mpa后,在DCS上按启动按钮投运空气预冷系统,向空冷塔导入压缩空气,压力控制在0.45Mpa以上。

4.2.1.3在DCS上启动大水泵P62(或P63),将另一台泵设置为备用状态。

就地检查水泵运行是否有异常声响等情况。

4.2.1.4控制阀FIC1024自动接到自动模式(SP=535m3/h),液位控制阀LIC1007自动接到自动模式(SP=60%);监控流量FI1024和E07液位LI1007。

4.2.1.5当大水泵P62或P63运转正常,E07液位稳定后,投运氮水塔E60。

4.2.1.6将LIC1002选为自动模式,设定值为50%。

4.2.1.7在DCS上启动小水泵P60(或P61),将另一台泵设置为备用状态。

就地检查水泵运转是否有异常声响等情况。

4.2.1.8控制阀FIC1028自动接到自动模式(SP=80m3/h),监控流量FI1028和E60液位LI1022。

4.2.1.9空气预冷系统已投入使用,将各控制阀设定为自动模式,水泵流量和空冷塔、氮水塔液位正常后可进行下一步操作。

篇2:空分装置安全生产技术规程

空分装置具有易燃、易爆、高压、低温等特点,与各生产装置关系密切,操作人员及其它有关人员都必须事先学习安全规程,严格执行并遵守操作规程,进行必要的培训。除遵守本章提及的内容外,还必须遵守国家、企业等有关的安全规定。

第一节空分装置主要物料特性

一、空气

空气主要是由氧和氮组成,在气体状态,它们是均匀地混合在一起的,空气中除氧氮外,尚有氩、氖、氦、氪、氙等气体,这些气体化学性质稳定,在空气中含量极少,在自然界中也不易得到,故而常称为稀有气体或惰性气体。

另外空气中还含少量的水份、二氧化碳、乙炔等气体,这些杂质气体虽数量不多,但危害不小。水份、二氧化碳在空气液化前最先冻结成固体,在空分装置内会堵塞阀门、管线及塔板的筛孔,还会磨损机器,影响传热,使空分装置不能正常运行。乙炔则是引起空分装置爆炸事故的主要原因之一,因而在空分装置的运行中必须引起高度的重视,并在空气液化前事先予以清除,常见的的清除方法有自清除和分子筛吸附等,分子筛吸附杂质的顺序为H2O>C2H2>CO2。

空气经液化后,由于组成空气的氧、氮等各组份之间沸点不同,在塔内经精馏后可获得所需氧、氮等各种组份。

如果把液空放在敞口容器中搁置一段时间,由于氮的沸点低,较易挥发而逐渐汽化,因而液体中氧的含量将会增加,剩下液体将逐渐具有氧的性质。

二、氧

氧是一种无色、无嗅、无味、无毒的气体,它与一定比例的可燃性气体(乙炔、氢、甲烷等)混合,能形成爆炸性混合物,氧还具有强烈的助燃作用。氧的浓度越高,燃烧越剧烈。包括金属在内的许多物质在普通大气中不会燃烧,但在具有较高浓度氧的情况下,便能燃烧起来。可燃性物质在浓度较高的情况下,容易引起自燃,甚至爆炸。如遇高压氧气或液氧,则情况更为加剧。浸透氧的衣物极易着火(例如静电荷产生的火花),并会极易迅速地燃烧起来,若不加以驱氧,相当长的时间内都会有危险。

三、氮和氩

氮和氩都是无色、无嗅、无毒的气体,在氮和氩浓度较高的情况下,人一旦吸入。则由于缺氧导致窒息,以致受害者在事先没有任何不舒服的情况下,很快失去知觉,造成生命危险。

氮和氩能抑制燃烧,因而氮和氩在许多场合可作为易燃易爆物质的保护气,在空分装置的保冷箱内充以干燥氮气,保持一定压力,可以排除湿气和防止氧的积累。

氖、氦、氪、氙等稀有气体也具有和氮、氩相似的性质。

四、低温液体

液空、液氧、液氮,由于温度很低,若与人们的皮肤接触,将会引起冻伤,类似于严重烧伤,须特别予以注意。另外在冷凝蒸发器中,液氧不断与氮气进行冷量交换,蒸发成氧气。液氧中的碳氢化合物含量超过一定浓度,在低温下以固态形式存在,会随着液氧的运动而相互间碰撞产生静电,严重时会发生爆炸。

五、液氧中的乙炔

乙炔比液氧重。乙炔在空气中的含量极少,约为0.001~0.1ppm,在化工厂区附近可高达0.5~1.0ppm,由于乙炔在空气中的分压很低,即使将空气冷却到-173℃,空气中的乙炔也不是以固态形式析出,而是随空气一起进入空分塔中,在精馏过程中,乙炔在液空中的溶解度较大,约为20ppm,一般不会在液空中析出,而是随液空进入上塔。当上塔液氧在主冷中蒸发时,随气氧带走的乙炔量约为液氧中的1/24,随着液氧的蒸发,乙炔浓度不断提高,当超过其溶解度时,就会以固态析出。当主冷的结构形式不合理或出现局部堵塞出现干蒸发等,乙炔会浓缩析出发生局部爆炸,固态乙炔加液氧的爆炸敏感性极高,甚至比液氧炸药的可爆系数高18倍,由此可以看出乙炔与大气中存在的其它碳氢化合物相比,是可能形成空分塔爆炸性事故的最大危险源。它是一种不饱和烃,具有高度的化学不稳定性。

六、液氧中的其它碳氢化合物

主要有:甲烷、乙烷、丙烷、正丁烷、异丁烷等烃类,其化学性质比较稳定,爆炸极限范围比乙炔小,其中不饱和烃类在液氧中的爆炸敏感性在相同的碳原子数情况下随其不饱和度的增加而增加,敏感性次序如下(由小到大):CH4→C3H6→C2H6→C4H8→C2H4→C3H6→C2H2。由于不饱和烃类(C2H4、C3H6、C4H8)在液氧中能与NO、NO2产生反应,生成一种黄色油,也是一种引爆物,因此在空气分离过程中严格控制这类烃类的含量。

七、四氯化碳

空分装置在洗塔(适用于铜材质空气分馏塔)、配件脱油脂时使用四氯化碳作为脱脂剂。四氯化碳是一种无色透明、不易燃烧的油状液体,具有一定的毒性,有很强的麻醉作用,极易被皮肤吸收,中毒时产生头痛、昏迷、呕吐等症状。四氯化碳常温下与硫酸作用生成剧毒的气体——光气,在500℃以上时与水蒸气化合也可以生成光气。

八、膨胀珍珠岩(珠光砂)

为保证减少塔内系统冷量大量损耗,维持连续生产,在冷箱内要充满具有良好绝热性能的绝热材料——膨胀珍珠岩保温,由于该保温材料容易受潮结块,所以应向保冷箱内充入干燥的氮气以防止冷箱外湿气的浸入。膨胀珍珠岩保温灰粉尘极易被吸入肺部,严重时会形成矽肺,影响人体健康。

第二节空分塔的爆炸机理

一、空分塔的爆炸部位

空分塔的爆炸是空分安全生产的最大威胁,根据爆炸力的大小,爆炸可分为强爆和微爆两种。强烈的爆炸不仅使爆炸设备本身遭到破坏,还可能引起相邻设备遭到破坏,甚至造成人身伤亡。微爆只是引起个别设备或管道局部的破坏,甚至不为操作人员所察觉,只是在检修时才被发现。这种爆炸有时不会引起工况严重恶化而造成停车,只是使某些工艺指标有所变化,如主冷的微爆造成氮气漏到氧侧;主换热器部分通道微爆使产品纯度变化等。

空分塔的爆炸及爆炸部位,与空分装置的流程、产品出塔时的状态及主冷的结构形式等有关。高中压流程发生爆炸的机会相对较多;以液体产品出塔的内压缩流程形式爆炸的几率大大降低;以气态氧气出塔的空分设备,由于液氧的大量蒸发,发生爆炸的危险性杂质的液化点绝大多数都比氧气和空气的液化点高得多,因而主冷极易聚集爆炸危险性杂质,这样主冷则成为爆炸的中心部位。

冷凝蒸发器的爆炸部位,随其结构型式不同也有所不同,一般易发生在液氧分界处,以及个别液氧通道不畅的通道等。

据统计空分塔可能发生的爆炸部位在以下几处:(1)上塔、(2)下塔、(3)主冷、(4)液空节流阀、(5)液氧排放阀、(6)热交换器冷端、(7)液空进口处的精馏塔板等。无论在哪一部位的爆炸,其原因均是有液氧(或富氧液空)存在,并在蒸发过程中造成爆炸物的浓缩或沉淀,在引爆条件下促使爆炸发生。

二、爆炸的原因

形成爆炸的因素有三方面:一是可爆物的积聚;二是助燃物氧的存在;三是引爆源的作用,前两个因素是内因,后者是外因。

可爆物在空分中的危险性取决于:(1)可爆物杂质在冷凝蒸发器内积聚的可能性;(2)杂质本身的化学稳定性。在烃类杂质中,乙炔是形成爆炸最危险的根源。这是因为乙炔在液氧中的溶解度极低,约为6.5cm3/L液氧,过剩的乙炔会以白色固态微粒悬浮在液氧中。乙炔和其它不饱和烃类具有很高的化学活性,性质极不稳定。固态乙炔加液氧的爆炸敏感性极高,甚至比液氧炸药的可爆系数高18倍左右。固态乙炔有时在无氧情况下也可能发生爆炸分解反应,温度达2600℃,爆炸速度达2500m/s,其威力与烈性炸药(T.N.T)爆炸相当。其它不饱和稀烃也可能发生爆炸分解反应,如乙烯、丙稀等,但它们在液氧中的溶解度比乙炔高,以固态形式析出的可能性较小,故危险性小些。

引爆的因素:(1)摩擦与撞击的机械作用;(2)静电作用;(3)固态乙炔颗粒与塔壁的摩擦;(4)具有特别反应能力的物质(O3、氮氧化物)的促进作用;(5)压力脉冲等。

第三节空分塔防爆措施及安全技术规范

为杜绝空分装置爆炸事故的发生,日常管理和操作时应从以下几方面着手:

一、减少爆炸危险物带入塔内

可爆物的来源有两个方面:一是原料空气的吸入;二是从压缩机组或膨胀机带入的润滑油及其轻组分。

为减少可爆物进入塔内,空压机的吸入口尽量远离其它装置的排放口,尤其是烃类、CO2排放口等;采用双层床吸附清除水分、CO2、乙炔等,同时加入适量5A,有效清除加工气体中的氮氧化物等易堵塞组分;对空分系统的管线阀门安装前要认真脱脂;系统吹除时要避免分子筛粉末进入板式通道而堵塞低温液氧的流动,出现“干蒸发”和“死端沸腾”等。

二、防止静电产生

保证主冷凝蒸发器接地线完好,空分塔必须在距离最大的两个部位接地,接地电阻应低于10Ω;氧气管道上法兰跨接电阻应小于0.03Ω,若在法兰连接处没有跨接导线的地方,应单独接地。

三、防止可爆物的局部浓缩

有的精馏塔爆炸是在液氧中乙炔含量并不高的情况下发生,可能是可爆物局部浓缩析出而造成的,因此要采取措施控制可爆物的局部浓缩。

1.停车时间较长时,应将塔内液氧、液空排放掉,以免在自然蒸发时造成可爆物的浓缩;

2.保持液面稳定且不要低于规定高度;

3.在结构上避免死角导致液体流动不畅。

四、正常生产时控制主冷爆炸的防范措施

1.为防止冷凝蒸发器的静电感应引起因乙炔和碳氢化合物浓缩所造成的爆炸事故,冷凝蒸发器必须采取接地措施。

2.工艺操作上保持冷凝蒸发器液氧液面全浸式操作,不能过高,过高会引起精馏塔液泛,过低易产生碳氢化合物的浓缩和沉积。工艺流程设计上采用液氧内压缩流程。

3.安全排放液氧是冷凝蒸发器防爆的一个有力措施,应保证数量不低于氧气产量1%的液氧连续从装置中抽取,或每班定时排放液氧不少于1次。因碳氢化合物和二氧化碳比液氧重,一段时间后会沉聚在冷凝蒸发器底部液氧下面,通过液氧排放可以稀释液氧中碳氢化合物及二氧化碳浓度。

4.每周至少三次对液氧中碳氢化合物含量进行痕量色谱分析,并做记录,定量检测碳氢化合物含量,及时调整控制工艺生产。原中石化总公司对液氧中易燃、易爆危险物品含量指标极限值规定如下:

(单位:ppm)

品名报警值停车值

乙炔0.11.0

乙烷15.040.0

乙烯10.025.0

丙烷10.025.0

丙稀2.05.0

C41.54.0

总烃100250~500

说明:各类碳氢化合物含量按碳计。

5.总烃停车极限250~500ppm表示两种情况

(1)当乙炔、乙烷、乙烯、丙烷、丙稀、C4有一种含量达到报警值而低于停车值时,总烃停车极限为250ppm。

(2)当乙炔、乙烷、乙烯、丙烷、丙稀、C4含量都没有达到报警值时,总烃停车极限为500ppm。

6.当液氧中乙炔或碳氢化合物含量偏高时,应采取如下措施

(1)多测量,尽快查明含量增高的原因并进行消除。

(2)增加液氧排放量及排放次数。

(3)检查分子筛纯化器工作是否正常。

(4)分析大气中乙炔和碳氢化合物含量。

若采用措施后,乙炔或碳氢化合物的含量仍然增加,达停车极限时则应立即停车,排尽液体,对设备进行彻底加温。

五、控制氧气管道爆炸的防范措施

1.限制氧气在铁素体中的流速。氧气管道一般为不锈钢管,铁素体在氧气中一旦着火,其燃烧热非常大,温度急剧上升,钢管很快被熔化,其原因必定有特发性的激发能源,如:机械能(撞击、绝热压缩等),热能(高温气体、火焰等)、电能(电火花、静电等)。铁锈、焊渣等杂物会被高速气流带动。摩擦、撞击产生火花或静电是最典型的激发能源。

氧气工作压力MPa<0.10.1~0.60.6~1.61.6~3.0

氧气流速m/s2013108

2.在氧气阀后,应连接一段长度不小于5倍管径,且不小于1.5m的铜基或不锈钢管道。

3.应尽量减少氧气管道的弯头和岔头,并采用冲击成型。

4.在对焊的凹凸法兰中,应采用紫铜片作O型密封圈。

5.管道接地线应完好,法兰间电阻值不符合要求的应加连接跨线,接地装置应完好可靠。

6.管道及附件应严格脱脂,并用氮气或空气吹净。

7.对于直径大于70mm的手动氧气阀,只有当前后压差小于0.3MPa以内才允许操作。

8.氧气管网要有完整的技术档案、检修记录。

第四节装置安全生产技术要点

一、氮气、氧气使用安全技术要点

1.氧气、液氧安全使用要点

在液氧泵及粗氩泵周围要严禁烟火,氧气管线一般应采用不锈钢或铜材制造、压力表使用专用氧压表,使用普通压力表时一定要经过脱脂处理。

液氧和富氧液空都能助燃,不得在装置内部任意排放,应通过管道排放到专门的液氧坑中或通过残液蒸发器由蒸汽加温后排放到大气中,排放点周围应保持清洁,严禁有机物或者油脂积存。排放液体时,周围严禁动火作业,排放人员应注意带上手套等保护用品,皮肤不得直接接触管线、阀门,并要避免液体溅到身上,以防冻伤。

2.氮气、液氮、液氩安全使用要点

为避免装置区域内局部氮气、氩气含量过高,不得将氮气、液氮、液氩排放于室内,排放液体时要注意防止冻伤。在有氮气、氩气含量超标的环境中工作,应戴上空气呼吸器。检修充氮(氩)设备、容器和管道时,需要先用空气置换,分析氧气含量合格(大于19.5%,小于23.5%),并办理相关作业票证,落实保护措施后方可进入设备内部作业。

二、装置防火、防爆安全技术要点

1.在空分装置周围禁止吸烟和明火。凡是需要明火及会产生火星、火苗的工作,如电、气焊、砂轮磨削等,通常禁止在空分生产区进行。若确需进行,则必须采取措施,确保工作区空气氧浓度不增高,并要在专职安全人员的监督下才能进行。

2.防止无意识明火带入现场。不得穿着带有铁钉或任何钢质件的鞋子进入空分生产区,以免由于磨擦产生火花而导致火灾的发生。

3.在充满氧气环境中从事工作的人员,都应穿棉织品的内衣和外衣,不能穿易产生静电火花的质料工作服。在充满氧气的环境中不要快速脱合成纤维衣物。

4.严格忌油和油脂。凡是和氧接触的部位和零件,包括用于氧气管线、管件、阀门和其它一切接触氧气的附件必须是不可燃材料制成,且都要确保绝对的无油和无油脂。在安装、使用前都必须事先进行脱脂清洗。

脱脂清洗剂应该用碳氢氯化物或碳氢氟氯化物。如全氯丁烯,三氯乙烯等。

5.空分生产区现场人员的衣着必须无油无油脂。装置工作区内禁止贮放可燃性物品。对装置运行所必需的润滑剂和原料,必须由专人妥为保管。

6.要防止氧气的局部增浓,如果发现某区域空气中的氧气已经增浓或存在增浓的可能性,则必须清楚地作出标示,并加以强制通风。

应避免人员在氧气浓度增高的区域内停留,如果已经停留,则衣着已被氧气浸透,此时应立即用空气进行彻底的吹洗稀释置换。空分操作人员或接触氧气、液氧的人员不准抹头油。

7.氧气阀门,特别是高、中压手动氧气阀门,在操作时必须缓慢操作,避免快速操作,非调压阀不允许做调压用。

8.开启阀门时要注意阀后管段压力和温度的变化,如阀后管段升压迟缓而温度升得较快时,必须停止操作,查明原因。

9.开启氧气阀门时,开启前严禁采用敲击阀门外壳或阀杆以求松动的办法,尤其在开启转动不灵以及长期不用而且已生锈的氧气阀门时,应特别注意,妥善处理,以避免不必要的事故发生。

三、防止窒息安全要点

1.检修充氮设备管道时,需先用空气置换,分析氧含量合格后才可作业,检修时与其它氮气管道加盲板隔离。

2.要防止氮气的局部增浓,如果发现某些区域已经增浓或有可能增浓,则必须清楚的作出标记,并加以强制通风。

3.严禁人员进入氮气增浓区,如确需进入,则需先进行通风转换,并经检验分析确认无氮气增浓后才允许进入,并要在安全人员监督下进行。

4.人员在进入氮气容器或管道前,必须经检验分析确认容器或管道内氧含量19.5~23.5%,才允许进入,并要在安全人员监督下进行。若在含氧量小于19.5%的区域工作,还必须戴好隔离式面具。

5.充装保温材料时避免掉入冷箱发生窒息事故。

四、防止冻伤安全要点

1.裸冷后进入冷箱一定要穿好防冻用品。

2.在处理低温液化气体时,必须穿着必要的保护服并戴上手套,裤脚不要塞在鞋子内,以防液体触及皮肤产生严重冻伤。

3.液氧、液氮、液空要排放在专用的管线和地沟内,不得在车间或设备周围任意倾倒。

4.在进入空分装置的冷箱前,必须预先对有关区段进行加温,然后才能进入。

五、保冷绝热材料(膨胀珍珠岩)的安全使用要点

1.为保持冷箱内的绝热材料有良好的绝热性,在保冷箱内需充入干燥的氮气以防止冷箱外湿气的浸入,并应定期检查保冷箱内充氮压力。

2.为防止保冷箱内由于氧气渗漏而造成氧气增浓,导致绝热材料含氧,为此要定期检查分析保冷箱内气体组份,若发现有氧气增浓现象,应查明原因,用氮气进行置换,以使氧浓度降到安全范围内。

3.珠光砂流动性很好,比重很轻,装填时,千万要小心避免掉入珠光砂堆中发生生命危险。不能踏在分馏塔管线及支架、阀门、容器上装珠光砂。在冷箱上珠光砂的倒入口上设置格网等安全措施。

4.珠光砂的排放,必须首先打开主冷箱顶部和板式冷箱顶部的所有人孔。全量通入冷箱密封气进行彻底加温,与此同时,冷箱内的所有设备必须加温至常温。然后,检测冷箱内气体的含氧量,若其含氧量超过20.95%,则应将整套设备静置等待,直到符合标准。珠光砂的排放必须从冷箱顶部开始,逐渐向下排放。下部人孔(包括珠光砂排放孔)严禁直接打开。珠光砂的排放速度应该缓慢,若有冰块,必从冷箱顶部取出。采取以上措施是为了防止静电和无法估计的物理、化学反应,而损坏设备。

5.矿渣棉对人体也有刺激性,钻入衣内会引起皮肤过敏,在装绝热材料时,必须使用特制的面罩和手套,以防止损害工作人员的呼吸器官、眼、皮肤等。

六、液氧贮槽安全使用要点

1.随着贮槽内液氧的自然蒸发,槽内的液氧中的乙炔有浓缩的可能,要注意定期取样分析,浓度控制在0.1ppm以下;随时注意槽内的压力变化,防止超压,使用时要严格遵守JB6893-1997《低温液体贮运设备使用安全规则》。

2.贮槽周围应通风良好,四周应有标志,5m内不得有明火、可燃易爆物及低洼处。

3.必须有接地装置和防雷击装置。接地电阻不大于10Ω,防雷击装置最大冲击电阻30Ω,每年至少检测一次。

4.严禁过量充装,充装率不大于95%,但使用过程中也要控制液位不低于20%。

5.槽内有低温液体严禁修理,必须排液后用干燥氮气或空气吹至常温。

6.贮槽安全附件应禁油,并定期校验。

7.操作时启闭阀门要缓慢,若出现阀门冻结,应用氮气、空气或热水解冻,严禁用明火加热。

8.停用时增压器阀门要关闭。

七、四氯化碳、三氯乙烯安全使用要点

1.使用四氯化碳、三氯乙烯的地点应该在露天或通风良好的地方进行,工作人员应有防毒保护措施,戴上猪嘴式面罩及胶皮手套。

2.连续工作8小时以上时,空气中四氯化碳含量须不大于50mg/m3,现场严禁动火作业。

3.物品应密闭避光保存,严禁与强酸、强碱接触,以防变质。

4.需要脱脂的部件,在脱脂前不能沾有水分,否则会产生化学腐蚀。

5.脱脂后应用干燥氮气或空气吹净。

八、安全保护技术防范措施

1.厂房设计

(1)空分装置的厂房和附属建筑必须设置适当的通风系统,尤其是在地下室、地坑、通道等易造成气体成份增浓的地方。

(2)在可能有液氧泄漏的地方,地板不得覆盖任何易燃材料(如木板、沥青等),而且必须平滑,不得有接口和断层。

(3)空分装置的厂房和附属建筑要开有紧急出口,且设置明显的标记。

2.防火设备

在氧气可能增浓的区域、场所设置“严禁吸烟”、“禁止明火”之类的醒目警告牌。

应有安全可靠的报警系统。

要设置足够的灭火设备。

3.防止超压:

在受压状态下工作的所有容器和管线,以及内部压力可能升高的容器和管道,必须配备有防止超压的安全装置(安全阀或爆破片等),且这些安全装置必须保持良好的工作状态,安全阀的起跳压力要定期进行检查,并有铅封。

空分装置的报警系统必须定期进行检查。

4.设备管线吹扫:

用压缩空气吹扫时要确保压力表好用,严防超压。

吹扫时各分析阀要打开吹扫。

流量计、液面计根部阀一定要拆开,不得遗漏,确保畅通。

吹扫节流阀时,身体应避开阀孔,防止机械杂质喷出伤人。

第五节环境与工业卫生管理规定

1.噪音危害

本装置压缩机岗位噪音较大,操作室内噪音应小于85dbA。

为降低操作现场的噪音强度,机组管路可以包隔音材料;也可以设隔音室通过双层玻璃观察运行情况,并定期巡回检查;空分塔升温吹除时应佩戴防噪设备。

为保证操作人员到现场工作巡检时减少噪音伤害,每个职工发放耳塞。

2.膨胀珍珠岩在装填、卸出时,摩擦粉碎,产生大量粉尘,覆盖范围较大,浓度较高(尤其在室内),吸入肺内,容易产生矽肺。装卸珠光砂时要佩戴劳保口罩。高空填装时防止人落入珠光砂内被淹没而窒息。

3.在使用CCl4脱脂时要有防护措施,严防中毒。使用后的脱脂剂应做好回收,严禁倒入地沟等地污染环境。

篇3:空分装置长周期安全运行改进措施

1装置概况

中油集团抚顺乙烯化工有限公司乙二醇车间空分装置,原设计使用法国空气液化公司的专利技术,采用全低压流程、常温分子筛吸附净化、透平膨胀机制冷、DCS控制,生产高纯氧、高纯氮的气、液产品,氧氮产量均为6000m3/h,于1991年投产;1997年5月16日发牛上冷爆炸事故后,于1997年日月重建,静设备(包括分馏塔,主换热器、主冷凝蒸发器、过冷器、液氧吸附器等)采用河南开封空分集团有限公司设计制造,动设备除膨胀机外,其余动、静设备仍为原法液空设备,另增加了台美国约克公司制造的冷冻机,高纯氧产量不变,高纯氮产量则提高到13000m3/h(设计值),于1997年11月8日产出合格产品,达到了次开车成功;但自投产以来,因主换热器堵塞造成运行周期短,到2000年5月装置大检修时,才彻底解决了这一问题。

2解决制约空分装置长周期运行的瓶颈

2.1分析制约空分设备长周期运行的主要原因

空分装置运行周期是指制氧机连续正常运行的时间,其长短是衡量装置运行状态和经济性能的重要指标之一。由于本空分装置的动设备除膨胀机外,全部为进口设备,运行状况良好,维护量小,但多次因主换热器堵塞造成运行周期短的问题一直困扰我们的生产,原法液空装置运行周期一般为七个月,分析原因主要是由于C02和水分的冻堵造成的,为此,在重建时降低了进纯化器的空气温度,对纯化器中的分子筛和铝胶量进行了调整,每只纯化揣的分子筛量比原来多装了1.4吨,铝胶少装了15吨、但是开工后,多次因主换热器堵塞而被迫停车处理,运行周期最多不超过100大,是什么原因造成主换热器堵塞的呢?

1.机械杂质、分子筛粉末等异物堵塞

从每个运行周期的分子筛山u与分馏塔下塔的压力差值看,一般都是从8kPa左右渐渐上涨到50kPa左右,如图1,从分广筛出口采样点排放观察未见分子筛粉末等杂物,停车大加温吹除时,打开各排放阀也不见机械杂质、分子筛粉末等异物,开车积液后,从下塔底部排出液空看,电无机械杂质、分子筛粉末等异物,因此,主换热器堵塞是机械杂质、分子筛粉末等异物造成的可能性可初步排出。

2.纯化器对水分的吸附效果不好

对纯化器出门的空气进行采样分析,工作初期露点都低于—65℃,工作末期大部分时间在—63℃,有时在—60℃左右,我们进行了多个运行周期的跟踪分析,整个周期的露点均在—63℃以下,说明水分进入分子筛的可能性很小。

3.纯化器对C02的吸附效果不好

在纯化器出口有C02在线分析仪,时刻监测空气进主换热器中C02含量,纯化器B使用时,出口C02含量始终小于O.2×10-6,纯化器A使用时,初期出口C02为O.2×10-6,中期上涨到(1.1~1.2)×10-6,尽管在允许:范围之内,但我们仍怀疑主换热器的堵塞极有可能是C02的冻堵造成的,问题出现在纯化器本身,或是分子筛有问题。

2.2纯化器的工作情况

分子筛纯化系统是空分装置中的关键部位,它承担着吸附空气中的水分,二氧化碳,碳氢化合物等杂质的重任,其吸附性能的好坏直接影响装置的长期、安全运行。

1.从理论上分析吸附过程的特点

(1)吸附平衡

当吸附了一定量的气体之后,吸附速度将逐渐减小,另一方面,被吸附的气体由于热运行会发生脱附,脱附速度随被吸附量的增加而增大,在一定温度和压力厂,当脱附速度和吸附速度相等时,便达到了吸附平衡。

(2)吸附过程简述

气体进入吸附器后,吸附质首先在靠近纯化器入口端的吸附剂上被吸附,并渐渐趋于饱和,达到饱和的区域称为吸附平衡区,在平衡区以下是在进行吸附的传质区,传质区以下是未吸附区,继续进气,纯化器传质区逐渐下移,木吸附区相应减少,当传质区的前缘刚达到吸附剂的出口时,出口气体中的吸附质浓度尚未增加,此点称转效点,到达转效点所需的时间为转效时间(即穿透时间),也就是纯化器的工作时间。

(3)吸附剂的再生

再生是吸附的逆过程,对吸附来说,温度越低,压力越高,则吸附量越人,对吸附有利;再生则温度越高,压力越低,对再牛越有利,再生效果越好。

吸附剂的再生主要是采用低压干燥气体(如污氮气,氮气等)作为再生气源,通过加热,冷吹过程使被吸附的吸附质解吸出来,恢复吸附剂的吸附能力。

2.本装置分子筛的工作情况

本装置分子筛采用上海UOP生产13*—APG型分子筛,它对H20、C02、C2H2有很强的亲和力,这种亲和力的顺序是H20>C2H2>C02,使用铝胶为法国空气液化公司生产;的活性氧化铝,吸水性能较好。分子筛使用周期为250分钟,进气温度在10~15℃,工作厄/J为500kPa左右,设汁气量为31500m3/h,再生气为污氮气,再生过程由电加热器将污氮气加热刊18O~200℃,加热时间70分钟,冷吹时间九145分钟,压力为9kPa,流量为7000m3/h。

为了保证纯化器的工况稳定,设计时必须使具吸附能力Q吸大于被吸附气体的吸附质总含量Q质,即Q吸>Q质,本装置纯化器的设计处理气量为31500m3/h,大于正常工作时的装置最大进气量29500m3/h,吸附时间不变,气体中吸附质的含量不变,即实际被吸附气体的吸附质总量Q实远小于Q吸,即Q吸>Q实。如果分子筛工作正常,则纯化器出口C02含量不会上涨,在整个周期应是基本趋于稳定的。而在A床使用时出现以C02含量的上涨,上涨的时间点并不固定,但均在使用2小时之内开始上涨,上涨的趋势如。

如果分子筛再生不彻底,其C02含量上涨时间应在使用的中后期,从趋势图分析看,分子筛某一区域有问题或是纯化器有内漏的刊能性要大一—些,为此,我们进行了以下工作:

(1)分子筛的质量分析

我们从A床分子筛的最上层均匀地采用分子筛样品,分别送大连物理化学研究所和上海UOP进行检验,证明分子筛各项指标均合格,不存在质量问题。

(2)分子筛装填的检查

我们在分子筛初次装填后,按要求进行了特殊再生;一年后,打开装填孔观察,发现分子筛装填表面平整,无冲击现象,估计铝胶利分子筛隔网完好,不可能混合,在2000年5月拆卸过程中证明了这一点。

(3)分子筛再生参数的调整

由于原法国液空有限公司设计进纯化器空气温度较高,在1997年重建时,新上一台冷冻机组,降低了进纯化器空气的温度,刘纯化器中分子筛和铝胶的装填量进行厂改变,铝胶仍用法液空生产的,由原来每只吸附器5.7吨下凋刊3.2吨,分子筛用上海UOP生产的13*—APG,1/16",由每只吸附器7吨上调到8.4吨,使川周期,再生过程各参数没作改变;运行几个月后,出现主换热器堵塞现象,可能对分广筛再生不够好,调整部分再生参数,再牛气量由原来的6400m3/h上调到7000m3/h,再生过程中,加热时间由原来的60分钟上凋到70分钟,冷吹时间由原来的155分钟下调到145分钟,其余参数不变;经几个周期的运行,再生结束时,分子筛床层温度不高,满足操作要求,同时更有效地保证分子筛的再生。

完成以上的工作后,我们经过反复地讨论研究,认为其原因只能是纯化器存在内漏;由于纯化器采用内保温,在对内保温壁进行焊接时,可能存在漏点,另外也可能是中心管泄漏,这样造成部分空气没经过铝胶和分子筛吸附就直接进入主换热器,使纯化器出口C02含量卜涨,从而造成主换热器快速堵塞,影响长周期运行。在2000年5月空分装置大检修期间。扒出分子筛和铝胶查漏,在两个纯化器的内保温壁上分别查出了大小不等的几个漏点,在公司领导的果断决策下,对内保温壁采用氩弧焊,进行满焊处理。100%探伤检查。漏点消除后,纯化器出口空气中C02含量由原来的1.2×10-6下降至0.1×10-6,大大降低了C02在主换热器上冻结的可能性,使空分装置的运行周期由原来的100天延长到现在的620天以上。

3本装置安全措施的改进

为了吸取空分装置爆炸的教训,根据我装置的实际情况,在重建窄分设备L新增了一系列安全措施。

3.1原料空气质量监测

空分装置生产的原料是大气,大气的质量好坏直接关系着主冷液氧中烃类含量,由于我公司空分设备建在装置区内,有三面被化工装置近距离包围,这样刘大气的监测显得十分重要,因此,我们采取了以下三项措施:

(1)对大气质量每周分析一次,大气质量指标见表1,从近几年的分析看,大气中的CH4,C2H4含量较高,曾多次超过人气质量指标要求,其余各项指标均正常。

(2)设风向标,根据风门变化和当时的大气质量情况进行操作调整。

(3)制定“周围装置紧急排放制度”,依据具体情况对空分进行操作。

表1大气质量指标

烃类物质

控制指标

甲烷

3.0×10-6

乙烷

0.1×10-6

乙烯

1.0×10-6

乙炔

0.5×10-6

丙烯

0.1×10-6

丙烷

0.1×10-6

碳4

0.1×10-6

总烃

8.0×10-6

氮氧化物

1.0×10-6

二氧化碳

<350×10-6

机械杂质

<30mg/m3

3.2空气净化

(1)对空冷塔的用水进行水质分析,确保用水洁净、无油,水质分析见表2,其中COD、PH值每班分析一次,油、悬浮物每天分析一次。

表2水质分析指标

项目

控制指标

油含量,mg/L

<5

悬浮物,mg/L

<50

COD,mg/L

<50

PH值

7.0~8.0

(2)增加一台制冷机组,确保空气进纯化器温度由原来的18℃左右下降到10℃左右。

(3)适当增加分子筛量,由于进入纯化器的空气温度降低,其含水量随之降低,可适当减少铝胶;分子筛量的增加,则增强了对烃类及C02的吸附,减少烃类及C02带入冷箱系统。

(4)纯化器出口C02在线分析仪更新,准确地监测进冷箱空气中C02含量的变化情况,一旦C02通过吸附层,则N2O、C3H8、C2H4将被解吸而进入冷箱系统。

(5)纯化器出口空气露点进行离线分析,每班一次。

3.3空气深冷分离

空气分离部分最易发生爆炸危险的应是主冷凝蒸发器,因此,我们对其采取了以下措施:

(1)主冷凝蒸发器结构设计为防爆型。

(2)采取全浸式操作,控制主冷液位在90%~94%,使主冷凝器蒸发器基本全浸入液氧中,防止烃类析出,减少发生爆炸的危险性。

(3)增设了连续的1%液氧排放,使主冷液氧始终保持部分更新,防止烃类的聚集。

(4)增大液氧吸附器的能力,硅胶由原来的150升增加到650升,大大增加了液氧中炔烃和极性有机物的脱除能力,并定期再生,实施工作票制度,严格再生管理。

(5)加速主冷液氧循环,防止烃类聚集。

(6)建立了在线八组分分析仪,700秒一组数据,可随时监测液氧中烃类的变化,并有离线直接法和浓缩法两种形式的色谱分析,每班一次;这样三种形式对比,更准确地掌握厂液氧小的烃类动态,发现液氧中的烃类含量上升,立即排放液氧,确保了装置的安全运行。

(7)每周分析一次主冷液氧中的汕及氮氧化合物。

尽管我们在安全方面做了很大的改进,采取了一些有效的措施,但是随着运行周期的延长,我们很清楚地意识到:动静设备的事故率会上升,装置的安全隐患将会增加,必须从技术的角度研究深层次的安全问题;

首先,我们一直坚持每季一次的安全评价工作,全而了解装置的综合危险程度,从而达到消除隐患、消灭安全上的管理漏洞,使装置真正达到本质安全型;

其次,认真做好主冷液氧中烃类物质的分析比较工作,每天我们都将离线直接法、离线浓缩法、在线分析法的三种结果通过计算机作图等手段进行分析比较,找出烃类物质随周围环境变化而增加或降低的规律,指导牛产,提前采取加大液氧排放等手段,确保液氧中烃类不超标;

第三,加强液氧吸附器再生前后的分析比较工作,灵活掌握其再生时间,发挥其最佳吸附能力;

第四,在线多次处理纯化器系统的切换阀关不严的问题,甚至几次在线更换纯化器系统的切换阀门。

第五,强化培训,提高员工的技术素质,加强事故预演训练,成功地避免了一次因仪表故障,空分所有调节阀失控的重大恶性事故的发生。

在各有关部门的协助下,经过车间不懈的努力,运用科学的管理方法,探挖装置潜力,加快技术改造,在既无备套空分,又无备用机组(除两台备用水泵和一台备用膨胀机外)的情况下,将原来的3个月运行周期延长至今的21个月以上的长周期安全运行,保证了合格氧、氮产品的连续外供,适应厂企业的发展要求,确立了向抚顺石化分公司东部各厂供氮的中心地位。

篇4:空分氩提取和液化装置安全操作规程

1、投运前,检查确认冷箱内容器、管道、阀门、仪表管、分析管等无泄漏,安全阀等附件完好。

2、对空分设备和液氧贮槽,必须进行液氧连续排放和定期排放,防止乙炔及碳氢化合物积聚、浓缩。

3、分析测定液氧中乙炔、碳氢化合物含量,乙炔含量不得超过0.1PPM;若含碳总量急剧上升,应加大膨胀量和连续排放液氧,直至达标为止。

4、严格控制主冷液氧液位,避免较大波动,并采取全浸操作。

5、及时检查空冷塔的压力、液位和冷却水量以及水冷塔的液位,防止空冷塔的水分进入分子筛吸附器。

6、空分已停车而循环水泵仍在运行时,要及时关闭进、排水阀门,防止水反窜入空冷塔、水冷塔,导致满水。并排尽空冷塔、水冷塔内的积水。

7、随时监视分子筛吸附器出口空气中的二氧化碳含量以及蒸汽加热器、出增压机冷却器的水分含量;如急剧上升,应及时处理。

8、空分、换热器等设备的冷箱,应充入干燥氮气,保持正压。

9、各装置停车时,应立即关闭氧、氮、氩送出阀,并通知闪速炉、转炉、总调度室等。

10、膨胀机、氧压机、氮压机等设备停止运行时,注意调整阀门开度,防止超压。

11、每班监测空分塔基础温度;开、关液体角阀前,必须确认阀门外部无冻结,以防损坏阀门造成漏液;排液时要缓慢进行,不得直排,以防冻坏冷箱板和基础。

12、氩提取系统中的精氩塔防“氮塞”阀门开度不得过大,以防形成负压而使外界水分进入塔内。

13、空分设备在采用氮气进行大加温或单体局部加热时,须悬挂警示牌,排放口附近不准有人停留。

14、运行中,保持温度、压力、流量、液位等工艺参数的稳定,避免大幅度增减空气量、氧气量和氮气量,并注意防止产生液悬等事故。

15、吹除操作时,应分段进行,保证所有分析阀、压力表、液面计、阻力计等小管畅通无阻,并直到吹除阀吹出的气体洁净无污物为止,冷开车吹除阀气体露点温度低于-60℃为合格。

16、液氧吸附器至少每月加温一次,严禁超期限运行;如化验分析液空、液氧中的碳氢化合物或其它危害物质超标,立即加温液氧吸附器,排放液氧,并加大膨胀量,缩短分子筛吸附器工作周期。

篇5:高纯氮空分装置安全操作规程

严格控制原料空气中碳氢化合物含量不超过规定值,否则需查明原因,排除故障。

各种仪表、信号及联锁,如有损坏状态不应开车或整体启动。

在设备带压时不允许拆卸,擦拭设备时要注意安全。

阀门开关要缓慢,对结霜的低温阀门先经加热化霜后,才能开车。

在设备发生紧急情况时要熟练地进行紧急停车。

要定期分析液空中乙炔含量不得超过0.6ppm,总烃不超过100ppm,达到此值时,必须采取有效措施,当液空中乙炔含量达到1ppm或总烃250ppm时,应停车加温处理。

设备进行大修或长期停车再启动前,必须对安全阀进行校正。

氮气容器或管道进行检修等作业时,必须严格遵守各项制度,以防窒息。

液空排放时,不得排放于基础之上或溅到人体之上,液空中不得混入油脂或其它可燃物,排放液体时要戴棉手套。

确实保证仪器、仪表及安全防护设施安全、灵活。

搬运充填珠光砂时,要戴特别的防尘口罩和用具,以防止珠光砂损害装填人员的呼吸器官和皮肤;在塔顶充填时,要有防护措施,避免滑入保温层被珠光砂“溺死”。

空分设备附近,严禁烟火,禁止存放可燃物、爆炸物、油脂等。

在氮气浓度较高的区域,应采取措施,否则,不得靠近,以防窒息。

制度专栏

返回顶部
触屏版电脑版

© 制度大全 qiquha.com版权所有