电动爬架整体提升大模板施工技术分析 - 制度大全
职责大全 导航

电动爬架整体提升大模板施工技术分析

编辑:制度大全2019-05-05

某市超高层电信枢纽大楼工程框剪结构,总建筑面积33400m2,地下二层,地上十八层。层高4.5m,总高84m.主体框架及剪力墙采用导轨式电动整体爬架(模)体系,剪力墙施工使用电动爬架带动钢制大模板整体同步提升,施工先进,效果良好。“导轨式电动整体外爬架(爬模)施工技术”评为省级工法,此项工程批准为全国建筑业新技术推广应用示范工程,2005年由建设部组织专家组验收通过。

一、超高层框剪结构导轨式电动整体爬架、爬模

1)方案特点:

超高层框剪结构如按常规采用搭设双排脚手架或三角架支撑系统作为工作面支设大模板,这些方法效率低,安全性差,劳动强度高,为了解决这一问题我们采用了导轨式电动整体提升爬模工艺,以附墙导轨为依托,架体上悬挂可调大模板,电动同步升降。此技术整体性好,安全可靠,劳动强度低,工效高,

①同一附着点多层多点附墙,保证整体牢靠稳定。

②具备防外倾及导向功能,整体受环境因素影响小。

③爬架一次安装,多次进行循环升降,操作简单,工效高,速度快,成本低。

④按施工流水段进行分段分单元升降,以便于流水交叉作业。

⑤爬模架体能够悬吊大模板同步爬升,(无须用塔吊吊装大模板),利用手动葫芦悬挂大模板便于大模板合模及拆模;利用大模板水平旋转支撑,便于临时找正加固。

2)工艺原理

在建筑结构四周分布爬升机构,附着装置安装于建筑结构上,架体利用导轮组攀附安装于附着装置的导轨外侧,电动葫芦通过提升挂座固定安装在导轨上,提升钢丝绳悬吊住提升滑轮组件,实现架体依靠导轮组沿导轨上下相对运动,架体上部设悬挑支架及升降手动设备悬挂大模板,调整大模板左右、上下空间位置,用于支模、拆模。

3)爬架组装工艺设计要点

①平面设计:考虑爬架(模)整体平面,主框架水平分段、分块的布局,预埋点及导轨的平面位置,爬架内排立杆离墙距离,立杆距离。

②立面设计:主要考虑立面整体高度,主框架及架体的竖向尺寸及分层步数,卸荷点及绳索连接点构造及尺寸,导轨的加强支撑构造,导轨附墙与架体的连结构造,架体悬挂大模板在施工中的安拆空间尺度要求。

③安全防护设计:每层脚手板铺设,平网、立网的整体全封闭围护,靠墙翻板构造节点,与墙体间隙的防护及防火防触电。

④预留预埋设计:主要考虑预留孔预埋件的平面位置及立面标高的确定和控制方法。

⑤电气设计:主要考虑架体整体同步和分段、分块单体调节升降控制线路,总控制台及分控点传感及通讯,以及防雷安全接地等。

4)工艺流程分(1)爬架初爬升流程,(2)大模板施工工艺流程

5)施工速度:

爬架可分段升(降)其高差不得超过一层。升降速度90mm/min,一般整个楼层每升(降)一层用时2.5h左右。

6)技术经济分析

①技术分析

电动整体提升爬模施工效率高,劳动强度低。和扣件式钢管脚手架相比,生产效率提高200%以上(提升速度90mm/min),劳动强度降低2/3以上;比悬挑脚手架和附着式三角架施工生产效率提高50%以上,劳动强度降低了1/2以上。经过五个月的施工,顺利结顶,缩短工期2个月,无任何安全事故.

②经济分析

整体电动爬升脚手架比扣件式脚手架直接经济效益(直接投资)节约13%。间接经济效益62.4%。

二、钢制大模板应用

为了提高生产效率,降低劳动强度,提高工程质量,本工程柱、梁、板在施工中广泛采用了竹胶合板、胶合板作柱、梁、板模板。内外剪力墙采用钢制大模板,内大模板采用塔吊吊装,外大模板采用电动爬架吊挂模板技术与架体同步上升。

大钢模板采用厚度6mm的钢板,主肋采用8号槽钢,次肋采用-6*80钢板组合加工而成,规格一般为一个开间或一面剪力墙。

最大尺寸6800*4200mm,共计1200m2,约160t,配置一层。

效果评价:

①剪力墙采用钢制大模板。所以整体性好,刚度满足要求,提高了平整度及表面光滑度。且缝少散件少,工序简化,安拆简单,用电动爬架吊挂模板同步上升,工效高。

②在以往的混凝土施工中由于采用小钢模板和木模板存在许多缺陷,如模板块小,缝多,施工效率低;小模板钢度差,需要背楞、螺杆多;平整度差;木模板易粘灰;边角及梁柱接头不易严密,易跑浆;支撑安拆量大,工作繁重;拆解组装慢,效率低;安全隐患多;模板堆放,清理不方便,散件易丢失等。

本工程18层,高84m,南北34.6m,东西73m。除一、二层为非标准层外,3~17层为标准层,层高4.5m。从标准层开始外墙采用40套导轨式电动爬架(模)3200m2,分四段施工爬升。此技术把外墙模板和脚手架结合为一整体,兼做安全防护架,同步爬升,升降方便,组合大模板结构刚度大,自身带有支撑加固系统,组装加固简捷快速,省时省力,而且克服了小钢模阴阳角接缝粗糙的缺点,不易发生胀模现象,墙体表面观感好。混凝土施工质量达到了清水混凝土的效果。实物工程质量剪力墙平整度2mm,单层垂直度3mm,总高垂直偏差11mm

三、结束语

1、推广应用建筑新技术加快了施工速度,缩短了施工工期。采用电动整体升降式爬架爬模施工技术在这方面具有许多明显的优点。

2、推广应用建筑新技术增进经济效益。企业经济效益的增长体现在利用建筑新技术提高工程质量、缩短施工工期、降低工程成本上。使用电动爬升架是一次投资,多次受益。

篇2:人工挖孔灌注砼桩安全施工技术措施

?人工挖孔灌注砼桩采用人工挖土成孔,灌注砼浇捣成桩;在人工挖孔桩的底部扩大直径,称为人工挖孔扩底桩。这类桩由于其受力性能可靠,不需大型机具设备,施工操作工艺简单,可直接检查桩底岩土层情况,单桩承载力高,无环境污染,故在各地应用较为普遍。人工挖孔桩的缺点是挖孔中劳动强度较大,单桩施工速度较慢,尤其是安全性较差。下面根据本人的工程实践,试述人工挖孔桩施工中的常见安全事故及各种安全技术措施。

1、挖孔桩的常见安全事故

人工挖孔桩的常见安全事故有孔口石块或杂物掉入孔口砸伤正在孔中的施工人员;孔口操作人员被地下有害气体中毒昏迷甚至死亡,孔壁支护不当而坍塌砸伤甚至活埋操作工人;孔内电缆、电线磨损受潮导致工人触电伤亡;深孔中突然涌水淹没操作人员等等。实践证明,只要施工人员树立安全意识,加强安全教育,做好安全技术交底,各种安全技术措施到位,人工挖孔桩的这些常见安全事故是完全可以避免的。

2、孔口围护措施

孔口四周必须浇筑砼护圈,并在护圈上设置围栏围护,应高出地面0.8m,如图1所示。孔内作业时,孔口上面必须有人监护。挖出的土方应及时运离孔口,不得堆放在孔口四周1m范围内,砼围圈上不得放置工具和站人。孔内作业人员必须头戴安全帽、身系安全带,特殊情况下还应戴上防毒防尘面具。利用吊桶运土时,必须采取相应的防范措施,以防落物伤人,电动葫芦运土应检验其安全起吊能力后方可投入运行。施工中应随时检查垂直运输设备的完好情况和孔壁情况。

3、孔中防毒措施

地下特殊地层中往往含有CO、SO1、H1S或其它有毒气体,故每次下孔前,必须对桩孔内气体进行抽样检测(可用快速检测管),发现有害气体含量超过允许值时,应将有害气体清除至化学毒物最低允许浓度的卫生标准,并采用足够的安全卫生防范措施,如设置专门设备向孔内通风换气(通风量不少于15L/S)等措施,以防止急性中毒事故的发生。人工挖孔作业一旦发生人员中毒、窒息等事故,必须在现场按应急措施规范要求实施抢救,根据情况及时送医院进一步抢救治疗,并报当地建设行政主管部门和劳动、卫生部门,以便采取相应措施。

4、防触电措施

施工现场的一切电源、电路的安装和拆除必须由持证电工操作。用电设备必须严格接地或接零保护且安装漏电保护器,各桩孔用电必须分闸,严禁一闸多用。孔上电缆必须架空1.0m以上,严禁拖地相埋压土中,孔内电缆、电线必须采用护套等有防磨损、防潮、防断等保护措施。孔内照明应采用安全矿灯或11V以下的安全灯。孔中操作工应手戴工作手套,脚穿绝缘胶鞋。

5、防止孔壁坍塌措施

在熟悉地质条件的基础上,开挖桩孔时原则上要设置砼护壁或钢护筒护壁,特别是直径在1.1m以上的桩孔。砼护壁每节高1m,厚约0.1m,可加配适量钢筋,砼强度等级不低于C10。一般每天挖1m深立即支模浇筑快硬砼,第二天继续施工。

扩底桩孔应做到:(1)当孔底扩头可能会引起孔壁失稳时,必须采取相应的措施,经企业技术负责人审批签字后方可施工;(1)已扩底的桩孔,要及时浇灌桩身砼或封底,不能尽快浇灌砼的桩应暂时不扩底,以防扩大头塌方。

人工挖孔桩开挖程序,应采用间隔挖孔方法,以减少水的渗透和防止土体滑移,防止在挖土或冲抓土成孔过程中因邻桩混凝土未初凝而发生窜孔现象。单桩挖孔应先中间后周边,并按设计桩径加1倍护壁厚度控制截面。

孔内一般不宜放炮,以防震塌土或震裂护壁造成事故,根据地质状况需爆破的,严格执行有关的爆破规程。

6、防止孔壁涌水措施

当相距10米以内的邻桩正在浇灌混凝土或桩孔积水很深时,要考虑对正在挖孔桩的危险影响,一般应暂停施工,人不准下孔。随时加强对土壁涌水情况的观察,发现异常情况应及时采取处理措施。采用潜水泵抽水时,基本上抽干孔中积水后,作业人员才能下至孔中进行挖土。地下水丰富时,可将中间部位桩孔提前开挖,汇集附近的地下水,用1~1台潜水泵将水抽出,起到深井降水作用。孔内必须设置应急软爬梯,供人员上下孔洞使用的电动葫芦、吊笼等应安全可靠并配有防坠落装置,不得使用麻绳和尼龙绳吊挂或脚踏井壁凸级上下。上、下孔洞必须有可靠的联络设备和明确的联络信号。

孔内作业人员应勤轮换,连续作业时间不宜超过1小时,以防止疲劳引发安全事故。

7、其它安全措施

施工时发现文物、古化石、爆炸物、电缆等应暂停施工,保护好现场,并及时报告有关部门,按规定处理后,方可继续施工。

人工挖孔桩施工前,应针对现场工程地质、水文状况和设计要求编制切实可行而又安全合理的施工方案,配备必要的机具和电器设备,确保各种安全措施及时到位。

篇3:混凝土挡土墙工程施工技术措施

1、基槽挖土方:本工程挖基槽土方采用挖掘挖机及人工配合进行开挖。挖基配合墙体施工分段进行,先测量放线,定出开挖中线及边线,起点及终点,设立桩标,注明高程及开挖深度,用1m3反铲挖掘机开挖,多余的土方装车外运弃土。在施工过程中,应根据实际需要设置排水沟及集水抗进行施工排水,保证工作面干燥以及基底不被水浸。

2、地基处理:当挖基发现有淤泥层或软土层时,需进行换土处理,报请监理工程师及业主批准后,才进行施工。

3、碎石垫层施工:根据设计图纸现浇钢筋砼挡土墙。基底铺20公分厚碎石垫层,并用打夯机夯入地基土。以便增加基底摩擦系数。予制挡土墙的基础垫层为C10砼垫层10公分厚。

4、钢筋安装:现浇钢筋基础先安装基础钢筋,预理墙身竖向钢筋,待基础浇灌砼完后且砼达到2.5Mpa后,进行墙身钢筋安装。

预制钢筋砼挡土墙的基础钢筋分二次安装,第一次安装最底层的钢筋,基础达到一定强度,安装好预制墙身后,再安装第二阶的基础钢筋。

5、现浇砼基础:按挡土墙分段长,整段进行一次性浇灌,在清理好的垫层表面测量放线,立模浇灌。

6、现浇墙身砼:现浇钢筋砼挡土墙与基础的结合面,应按施工缝处理,即先进行凿毛,将松散部分的砼及浮浆凿除,并用水清洗干净,然后架立墙身模板,砼开始浇灌时,先在结合面上刷一层水泥浆或垫一层2—3公分厚的1:2水泥砂浆再浇灌墙身砼。

墙身模板采用光面七夹板拼装,竖枋用8×10cm枋间距为40cm,用钢管作围楞,用8×10cm的木枋作斜撑进行支撑,侧模用ф16的螺栓对拉定位,螺栓间距为80cm(见附件挡墙模板示意图),螺栓穿孔可采用内径为20—25cm的硬塑料管,拆模时,将螺栓拔出,再用1:2水泥砂浆堵塞螺栓孔,墙身模板视高度情况分一次立模到顶和二次立模的办法,一般4米高之内为一次立模,超过4米高的可分二次立模,亦可一次立模。当砼落高大于2.0m时,要采用串筒输送砼入仓,或采用人工分灰,避免砼产生离析。砼由砼加工厂,用砼运输车运至现场,在墙顶搭设平台,用吊机吊送砼至平台进行浇灌,砼浇灌从低处开始分层均匀进行,分层厚度一般为30n,采用插入式振捣器振捣,振捣棒移动距离不应超过其作用半径的1.5倍,并与侧模保持5—10cm的距离,切勿漏振或过振。在砼浇灌过程中,如表面泌水过多,应及时将水排走或采取逐层减水措施,以免产生松顶,浇灌到顶面后,应及时抹面,定浆后再二次抹面,使表面平整。

砼浇灌过程中应派出木工、钢筋工、电工及试验工在现场值班,发现问题及时处理。

砼强度件制作应在现场拌和地点或浇灌地点随机制取,每工作班应制作不少于2组试件(每组3块)。

砼浇灌完进行收浆后,应及时洒水养护,养护时间最少不得小于7天,在常温下一般24小时即可拆除墙身侧模板,拆模时,必须特别小心,切莫损坏墙面。

7、伸缝缩、沉降缝及泄水孔的处理

现浇灌钢筋砼挡土墙的伸缩缝和沉降缝宽2cm(施工时缝内夹2公分厚的泡沫板或木板,施工完后抽出木板或泡沫板)从墙顶到基底沿墙的内、外、顶三侧填塞沥青麻丝,深15cm。

挡土墙泄水孔为ф10cm的硬质空心管,泄水孔进口周围铺设50×50×50cm碎古,碎古外包土工布,下排泄水孔进口的底部铺设30cm厚的粘土层并历夯实。

篇4:高墩大跨连拱大吨位吊装箱型拱桥施工技术措施

1前言

拱桥是我国公路上使用广泛且历史悠久的一种桥梁结构型式,它外形宏伟壮观,且经久耐用。近些年来,梁式桥、斜拉桥、吊桥等桥型修建不少,但我国相当长的时间内尚不能提供大量钢材来修建公路桥梁,而钢筋砼拱桥无需高强钢材,跨越能力大,造价较低等特点,符合我国当前的实际情况,尤其在山区公路,仍为设计者之首选。

国道319线长涪高速公路斜阳溪大桥是一座四跨、五节段吊装箱型拱桥,由四川省交通厅公路规划勘察设计院设计,中铁二局第五工程有限公司承建。该桥于1997年11月30日开工,历时三载,于2000年10月30日完工。

2工程简况

斜阳溪大桥位于国道319线重庆渝涪高速公路K115+473处,路线在此以2.7%的纵坡跨越斜阳溪和双河溪。由于地面横坡大,左右线按独立的两座桥设计。左线桥布置为4×16mPC空心板+4×132m钢筋混凝土箱形板拱+2×16mPC空心板,全桥长671.62m;右线桥布置为2×16mPC空心板+4×132m钢筋混凝土箱形板拱+2×16mPC空心板,全桥长637.6m,从美观及施工方便考虑,主桥墩、台设在相同平面位置。

主桥拱圈为等截面悬链线无铰拱,正拱斜置。L0=132m,F0/L0=1/5,m=1.756,预留拱度12cm(按推力影响线分配)。左右线拱圈各由5片宽1.5m的拱箱预制拼装形成,拱圈宽7.5m,箱高2.2m,顶底板厚0.2m,中肋厚0.4m,边肋厚0.25m,普通横隔板厚0.1m,吊扣点处横隔板厚0.13m。

拱上采用双柱式排架墩,大悬臂盖梁;墩(台)上立柱为双柱式空心柱,壁厚0.25m,外形尺寸为2.5m×1.5m,拱箱吊装过程中可作墩扣。

拱上桥面板为9.928mPC简支空心板,桥面连续,在每孔墩(台)立柱上设一道伸缩缝。

主桥下部5#~7#墩采用钢筋混凝土空心薄壁墩,纵横向按1:50往下放坡,按单片拱箱合拢水平推力进行设计;4#、8#台及5#墩采用明挖扩大基础,6#、7#墩采用承台桩基础。

引桥设计为柱式墩,台为重力式U型台,基础为明挖扩大基础。

该桥设计荷载:汽车-超20级,挂车-120级;桥面净宽:净-2×11m(行车道)+1.5m(中央分隔带)+2×0.5m(护栏)。

该桥的特点是:跨度较大(净跨径132m)、连拱较长(4跨连拱,吊装缆索跨度较大,设计吊装缆索中跨径655m)、桥墩和立柱刚度较低(墩高且为空心薄壁结构,最高墩身为64m(6#墩))、桥位风速较大(设计风速27.9m/s)、吊装重量较大(最大吊重达70t)、设计要求严格控制施工过程的结构受力与变形指标等。该桥是长涪高速公路上的重、难点工程,重庆市交通局及重庆市高速公路建设指挥部十分重视,多次到现场指导工作,并作为重庆市科技攻关项目。因此“高效、优质、安全”施工意义重大。

3施工方案设计

该桥施工重、难点是缆索吊装施工。根据该桥地形、地势情况及工程特点,结合本单位施工技术水平、机具设备等,确定该工程总体施工方案及控制要点为:①基础采用常规方法施工,重点注意大体积承台混凝土施工控制;②空心薄壁高墩采用本单位在诸多空心薄壁高墩施工中开发的“采用钢管爬架倒模新工艺施工空心高墩工法”施工,重点进行模型设计;③主拱箱采用缆索吊装施工,重点为缆索吊装系统设计、吊装工序,解决设计要求的主墩只能承受单片拱箱推力而按双基箱合拢施工技术;④墩(拱)上排架采用缆索吊装施工,重点注意排架尺寸、吊装连接方式;⑤桥面板采用预制吊装施工,重点注意预制构件的质量。

4施工方法

4.1基础施工

该桥基础包括明挖扩大基础和挖孔桩基础,施工采用常规方法施工。开挖时首先测量放线,复核地面标高。明挖基础施工时据左右线基底标高确定施工次序,开挖至基底时要禁止放炮,避免基础整体性受到破坏,并对放炮振松的岩体清除干净、彻底。挖孔桩基础施工时,要跳孔开挖,施工时孔口设护壁,钢筋笼就地绑扎,桩基检查验收后,浇灌混凝土。桩基完工后,承台基础检底,绑扎钢筋浇灌混凝土。承台混凝土属大体积混凝土,降低水化热,防止混凝土开裂为施控制重点,采取掺部分粉煤灰降低水泥用量,掺高效、缓凝减水剂推迟水化热高峰值,设置两层循环水管帮助散热,灌水养护控制内外温差的施工方法。

4.2墩身施工

空心薄壁高墩施工重点是解决模板模型、模板安装及拆除方法、混凝土运输等。空心薄壁高墩施工一般采用的施工方法有落地支架提升模板、滑升模板及翻转模板施工方案。落地支架提升模板方案支架材料用量较大,施工速度较慢;滑升模板方案施工速度快,但滑模工艺要求严格,且昼夜连续作业,管理难度较大;翻转模板施工方案用料少,工艺较简单,且速度较快。一般均需配备塔吊、电梯等设备。我单位施工该类型薄壁空心高墩开发了类似翻转模板施工方案的“采用钢管爬架倒模(简称爬模)工艺施工空心薄壁高墩工法”,充分利用常备构件,材料用量少,速度较快,且工艺较简单。经比较,决定采用“爬模”施工方案施工主桥墩身。

根据本桥墩身设计特点(空心、多室、内外截面尺寸较大、墩身较高)等,进行方案设计。墩身外模采用δ=5mm的钢板加∠50×50、50×3mm肋条间焊而成,每块模板尺寸2×3m;内模用P3015型钢模,并特制收坡钢模和圆端角端模,模型间用螺栓拼合而成,内外模间设对拉螺栓。模型提升架采用万能杆件组拼内爬升架,辅以钢板组焊的伸缩式箱型梁形成,手动葫芦提升,其顶设置操作平台,安放提升材料卷扬机,设摇头扒杆吊运钢筋及机具;墩身外围挂钢筋梯,铺木板供人员上下立拆模,内架上左右设三层平台存放内模;模型外围立面用安全网全封闭防护;混凝土用泵机一次输送,泵管利用预埋在墩身上的固定架由下而上安装;施工人员用升降机载运。

施工过程中,每一节模板都立在已浇注混凝土的模板上,该节施工完毕后拆除下节模板,再转至上节模板施工,两节模板交替轮换往上安装。墩身钢筋连接用竖向电渣压力机竖焊。墩身施工至顶时,利用提升架支撑梁作支架,现浇施工各墩顶拱座。由于正拱斜置,拱座斜面标高、倾角需认真控制,确保满足设计要求。

混凝土输送采用泵送,混凝土强度等级为C30,一般均用中(粗)砂。因地处长江中下游,中(粗)砂产量甚微,开发利用丰富的长江特细砂(60%)掺石灰岩机制砂(40%),即改良特细砂配制高标号混凝土,进行混凝土配合比设计,经工程实践,满足构件特性要求。

4.3墩上立柱及盖梁

墩上立柱充分利用大吨位缆索吊装索道,主桥5#~7#墩上立柱及盖梁采用预制吊装施工。就近各墩位平整场地,预制墩上立柱及盖梁。整根立柱吊重大,分为两段预制,对立柱与墩身顶、立柱与立柱、立柱与盖梁的连接进行加强设计。立柱与拱座、立柱与立柱间连接采用螺栓拧紧,立柱与盖梁连接采用四根钢筋伸入盖梁。墩帽施工毕,高架索道试吊验收后,吊运立柱就位,安装时,先用缆风绳调正轴线,上紧连接螺栓,为调节标高,上下角钢间可垫钢板,并焊接预留钢筋后解除吊点,在间隙处冲填干硬性高强砂浆,外浇接头膨胀混凝土。盖梁抬运就位后,采用水平仪观测标高。必须保证接头钢筋焊接质量,缝隙间砂浆填充密实,接头混凝土捣固密实。

主桥4#、8#拱座立柱采用万能杆件搭设支架现浇施工。立柱施工到顶时,预留牛腿支架预留件,支撑槽钢横梁,现浇施工盖梁。

4.4缆索吊装设计

由于本桥主墩按单片拱箱合拢水平力进行设计,因此相邻孔合拢片数不能大于1。本桥施工的难点在于拱箱吊装,既要满足相邻孔合拢片数不能大于1,又要确保拱箱吊装合拢后的稳定和安全。对吊装施工方案,设计曾考虑了两种方案:①将主桥4#~8#墩台用钢铰线连结在一起,设两组吊装天线,采用双基合拢,由于桥墩只能承受一片拱箱水平力,另一片拱箱水平力由对拉的钢铰线来平衡。②采用修吊桥的方式进行拱箱吊装,即第一孔、第二孔第一片拱箱端段采用墩扣,间段采用塔扣,顶段扣在主索,再吊装第一孔第二片拱箱形成双基合拢。吊装跨序为涪陵岸跨→中跨→长寿岸跨。因该桥现场实际特点是:4#~5#墩跨有二专路跨越,沿桥轴线地形高差50~60m,主拱箱预制场无法安排在两台后路基上或4#~5#墩间,只能选择在5#~6#间,不能按设计吊装跨序施工;设置主墩反抵抗单片拱推力装置设于地面,反拉绳影响拱箱吊装时移梁平车不能进入主缆索下,同时需要设置两付工作索道。经检算单基合拢时主墩抗扭刚度满足施工需要,提出了先吊装左右幅靠路线中心的拱箱,然后用型钢临时联接成格构,既保证拱箱稳定,又不增加桥墩的水平力,并减少吊装设备的施工方案,得到各方同意。以此进行缆索吊装系统设计。

本桥缆索总体布置为三跨一组承重天线,长寿端边跨115m,涪陵端边跨145m,中跨度655m,设计吊重为70t,两旁架设两付吊重为5t的工作索道。主索道承重绳选用6∮55日本产密封式钢丝绳,工作索道承重绳选用国产∮47.5钢丝绳。主索道用于吊装主拱箱、墩上立柱及盖梁以及预制车道板等。工作索道用以解决部分混凝土浇注和材料、机具、人员等运输。两端塔架利用万能杆件组拼,长寿端高56m,涪陵端高66m,两端各布设轻型桩板式地垄一个。

4.5主拱箱施工

4.5.1主拱箱预制

拱箱预制场设在5#~6#墩并紧靠6#墩,场内设15个拱胎,3个用于预制中段,6个用于预制次边段,6个用于预制边段。利用万能杆件组拼龙门吊桁车用以运输移存拱箱;为减少场地的租用和大量挖填方,拱箱两层堆码储存。为确保5#~6#墩跨拱箱顶段正起吊、正合拢,在该跨跨中位置另设一组与中轴线垂直的储存场。

按布置规划的场地,夯实拱胎。施工中准确按标高布设,夯填坚实、牢固,并预留出穿拱箱吊点处吊具、脱模打顶的槽沟位置。

主拱箱分五段预制组装,先平卧预制腹板与横隔板,再在拱胎上按常规组装将腹板、横隔板立放在拱胎上焊接成若干格,现浇底板混凝土,再现浇腹板、横隔板间的接缝混凝土使之形成开口箱,最后现浇顶板混凝土,形成封闭箱。组装施工过程严格控制接头倾角、连接角钢位置准确,成型后的弦长误差不超过6mm。

养护顶板混凝土强度达设计的100%后用千斤顶顶升脱落,用龙门吊桁车移至储存场。

4.5.2主拱箱吊装

先吊装左右线相邻最近拱片,合拢后用型钢连锁,形成一个稳定的“桁架拱”结构,辅以横向缆风绳再松开吊扣索,待全桥“桁架拱”形成后,其它辅助箱遵守相邻孔合拢片数相差不大于1的要求依次往外,左、右对称吊装合拢。

4.5.2.1横向临时连接结构设计

横向临时连接结构是将紧靠桥轴线的两肋拱片固接,并辅以缆风绳,以便形成稳定的“桁架拱”结构后拆除吊扣索,因此设计应有足够的刚度,将两片合拢后的拱肋连接在一起以增强横向刚度,控制两拱箱平面尺寸不变形,及其在风力作用下共同受力达到稳定。据此,上、下均横梁采用2[22组成“Ⅰ”字构造,上横梁焊在拱肋顶板预埋钢板上,中部采用万能杆件组拼与上横梁形成桁架结构,将两肋拱箱牢固连接。安装在每跨边段顶端与次边段顶端第一个横隔板及中段中央共5处。

4.5.2.2扣索系统及扣塔设计

该桥主拱箱分五节段吊装,扣索分上扣索、下扣索,扣索索力据绳索整体布置计算结果分别是上扣索为103.5t,下扣索为42t,拟定上下扣索分别采用4∮43和2∮34钢丝绳。

拱箱预制场选择在5#~6#墩间,墩柱盖梁顶离地高达94m,拱箱起吊过扣索高度较大,无法采用歪拉迈过扣索,只能选择穿扣方案,所以上、下扣索均应设置有一定宽度(2.5m)扩张装置,以利拱箱能从扣索中间提起。

长寿岸有小工作索道牵引、起重绳影响,扣索在平面位置上应有能躲过工作索道起重、牵引绳的宽度,且两岸路基上有众多的预制件(拱上立柱及其盖梁),扣索不能直接从地面引出,故扣索对称布置在主索两侧8m处,挂托索轮从塔架上引出。

由于索道跨度大,次边段扣索的水平夹角过小(约为10°),故主墩立柱盖梁上需设扣塔增加扣索角度以减小扣力。据此,在4#~8#墩设万能杆件组拼的移动式扣塔,高度8m,以便拱箱能通过扣塔,塔顶设水平撑梁,用以支承及扩张上扣索,墩柱盖梁上设置下扣索支承及扩张装置,上下扣索扩张宽度2.5m,扣塔下部锚固在墩柱盖梁上,顶部四周设∮15.5缆风绳,拉在相邻墩帽上,扣塔采用工作索道吊运移动。

因拱箱吊装时,箱就位后的平面空隙只有4cm,无法采用传统的捆扎式吊装与扣挂拱箱,拱箱预制时埋设吊孔,开发设计吊扣直接转换的吊带式扣挂系统。

本桥上下扣索均采用从主地垄引出的通扣布置,扣索均用2×1000m绳,采用双头滑车连接。

扣索在拱箱吊装时,因穿塔架的次数较多,且扣索较长,工作量极大,布置时宜尽量减小退绳长度。

4.5.2.3缆风系统设计

该桥设计风速27.9m/s,拱箱吊装采用双单基肋合拢,横同风力达44t,稳定性较差。因此设计安全能提供拱箱横向稳定的浪风系统是必不可少的。

缆风设计原则上应尽量少,且对称布置,缆风绳要短,能提供足够的拉力且变形量小,要与桥轴线夹角尽量大与地面的夹角尽量小,且两边长度、角度尽量对称。但该桥桥址地形地貌极差,均无法满足上面关于风缆布置的一般基本要求。

据现场实际情况,布设的左右浪风长度,角度相差较大,且设置于拱箱下,拱箱易扭转,同时长度过长(约250m),受力差,竖角度大(约30°),为此,分别计算各绳索受力情况,施工中采用传感器测设初张力,使每根缆风绳达到设计的初张力,确保拱箱吊装施工系统有较好的稳定作用。单片拱合拢时共设置4对浪风,每对浪风拉力按11t水平力设计,采用2∮19.5钢丝绳。

地垄设计是按每个地垄上设4组浪风,共计拉力76.8t,分4个3∮16预埋环设计预埋。浪风地垄一律采用桩垄,桩径为2~2.5m,深度为3~5m。

该桥缆风设计具有如下特点:①风速达27.9m/s,风力达44t;②地形地貌条件差,左右浪风长度、角度相差太大;③浪风设置于拱箱下缘,拱箱易扭转;④浪风长度过长(达200多米),受力条件差,竖直角大(达30多度),扣力增加较大。

4.5.2.4吊装工艺原则

主拱箱吊装原则:不歪拉,不斜吊,正穿扣,正合拢。

拱箱吊装程序:边段拱肋吊装及扣挂,次边段拱肋吊装及扣挂,中段拱肋吊装及合拢。

拱箱扣索布设原则:边段拱肋扣索通过墩上立柱采用通扣,次边段拱肋扣索通过墩柱上移动式扣塔进行通扣。

拱箱吊装跨序:涪陵岸跨(8#~7#墩跨)→6#~7#墩跨→长寿岸跨(4#~5#墩跨)→5#~6#墩跨拱箱。

拱箱吊装片序:先吊装左右线相邻最近的两肋拱片,而后依次往外,遵守相邻孔合拢片数相差不大于1的原则左、右对称吊装。

拱箱吊装段序:边段→次边段→顶段并左右对称。

拱箱合拢原则:严格采用边碰中合拢顺序。

浪风绳布置原则:浪风绳与桥轴线水平投影的夹角大于50°,与地面夹角小于20°。

拱箱吊装准备:①高架索道试吊,按设计吊重的70%、100%、130%进行,对塔架、地垄等缆索吊装系统验收合格后进行主拱箱吊装;②预制拱箱从长、宽、高、中线及预埋件进行质量检查;③拱座混凝土平整凿毛,标出拱肋安装位置台口线及中线;④测量计算拱肋长度与拱座间净跨的施工误差,确定钢垫板厚度;⑤对吊装拱箱在其端头及拱肋顶部作中线观测标记,拱段前端头设高程观测标尺,对合拢段拱箱的纵向中部设水平标尺,以便按三角网布设的设计跨中控制点进行跨中观测。

拱箱吊装观测:①采用测主缆索跨中垂度以计算主索拉力;②应用位移值观测地垄的安全;③用经纬仪观测塔架位移;④用水平仪观测拱肋高程,一般观测接头和拱顶标高,用以控制合拢过程中拱箱抬高量扣松和合拢;⑤用经纬仪观测拱箱吊装合拢过程中的墩顶水平位移,必须满足设计要求的情况下进行拱箱吊装。

主拱箱吊装合拢是施工中的重点、难点。经过工程实践,只要在施工中制定切实可行的安全措施,加强拱肋的横向稳定,稳妥地制定施工工艺和拱箱合拢方案,是可以完成单箱合拢的。

4.6拱箱接头与纵缝、垫梁混凝土

单线拱箱合拢后,即可浇注浇注拱箱间纵缝混凝土、拱箱顶板现浇层混凝土(为减轻吊装重量,拱箱顶板减薄10cm)及垫梁混凝土。浇注前应对拱圈的接头、跨中及1/8跨径处的高程全面复核,以对拱箱沉落成拱情况有进一步的了解,并做详细记录。混凝土集中在两端引桥上拌合,用工作索道吊运混凝土浇注。浇注顺序为由两拱脚至拱顶,横向先中间后两边,左右对称,四孔同步,均匀加载,严防拱箱纵向失稳。

4.7拱上立柱及帽梁安装

拱上立柱及帽梁型号多、数量大、圬工方量小,属细长构件,设计采用搭架现浇施工。为充分利用大吨位缆索吊装系统,经同意后变更为预制吊装施工。

按照等强与超强原则,对拱上立柱与垫梁、帽梁接头进行了设计。在两端路基上平整场地预制。利用主索道尾端索吊移立柱至轨道平车上,运立柱及帽梁至主索道下方,两端起吊摆直,垂直运输吊装,从拱脚至拱顶安装。立柱与垫梁、帽梁间接头钢筋必须保证焊接质量,缝隙间填实干硬性高强砂浆。

4.8桥面板施工

桥面板预制场选在涪陵端路基上,场内设两组墩式张拉台座倒用,每组台座共三线,场内铺设移梁轨道,制作简易龙门吊移存预制板。

桥面板预应力钢铰线采用定位板控制平面位置,张拉采用张拉力和伸长值双控,张拉按0→超张拉105%δκ→20%δκ(测伸长初值)→100%δκ(测伸长终值)→锚塞锁紧(测回缩值)顺序进行。钢铰线张拉结束后绑扎钢筋,安装空气胶囊,浇注混凝土。待混凝土强度不低于设计强度的80%后,放松预应力钢铰线,移梁桁车运至储存场存放。应注意地是存放期过长,超过3个月,预拱度有可能继续增长,桥面板中桥面铺装在跨中有可能变薄的影响,相差过大,则须预压。

拱上立柱及帽梁施工毕,铺设轨道,用平车运输桥面板至索道下方,用主索道吊运安装,先全桥贯通4片后采用汽车吊辅助架设。

4.9桥面系施工

含护栏、分隔带、泄水管、伸缩缝、桥面铺装等,该部分须确保线条直顺、牢固、美观,桥面排水良好,无阻塞、渗漏、变形、开裂等,保证质量。

5施工措施

对于如此难度的特大型桥梁工程,制定切实可行地施工安全、工程质量、工期进度控制措施是保证施工顺利必不可少地。

5.1施工安全管理

针对斜阳溪大桥的结构、场地、作业环境和机械设备,安全管理工作主要从以下进行。

①安全组织机构建设。设立“安全领导小组”,设立专职安全员,统一管理、监督、检查安全工作。

②从严、从细、从实狠抓经常性的安全教育。安全意识人人增强,安全知识人人明白。

③编制各种安全管理规定、措施。使安全工作有章可循,有法可依。

④对危险作业场所、作业面、特殊机械设备采取特殊措施。同时加强车辆管理。

5.2工程质量控制

工程质量总目标是:分项工程评定合格率100%,优良率96%以上,创省部级优质工程。

①建立健全质量保证体系。设立专职质量检查工程师,成立全面质量管理小组,树立施工现场为工作重点的思想。及时解决施工中遇到的技术质量问题,进行全方位质量控制。

②激励创优意识。用各种方式激励全体职工的创优意识,使职工从头至尾保持饱满的创优热情。

③难点科研攻关。攻关内容以优化设计、施工工艺为主。通过科研活动不断优化施工设计,保证技术的先进性,利用新技术、新工艺、新材料、新设备提高工程质量。

④提高工人技术素质。采取岗前培训,施工前技术交底,施工中技术指导,施工后讲评等方法对施工队伍培养。

⑤狠抓施工过程管理。抓好原材料质量检验、工艺操作质量控制、隐蔽工程检查、质量评定和混凝土试件质量评定等四个环节。

5.3保证工程进度

工程进度主要从下面几方面抓。

①建立精干高效的工程指挥班子,组建能征善战、有丰富经验的施工队伍。

②统筹安排,超前计划。编制实施性网络计划,严格控制各分项工程施工时间。

③突破重点,兑现工序工期。该桥由一道一道工序完成,每道工序的进度都直接关系整个工程的进度,因此每道工序均须详细安排,抓好落实。

6结束语

高墩、大跨、连拱、大吨位缆索吊装是斜阳溪大桥的特点,该桥的施工方案是我单位坚持以科研为先导,充分发挥了自身建桥经验和技术特长,推广成熟的施工工艺,开发新技术、新工艺的成果。该桥由重庆市公路工程质量检测中心与重庆交通学院分三阶段于2000年12月8日~16日对测试跨进行了静、动载试验,符合设计标准,满足使用要求。

篇5:钻孔灌注桩的施工技术质量控制措施

钻孔灌注桩的施工大部分是在水下进行的,其施工过程无法观察,成桩后也不能进行开挖验收。施工中任何一个环节出现问题,都将直接影响到整个工程的质量和进度,甚至给投资者造成巨大的经济损失和不良的社会影响。因此,要求基础施工队伍在施工技术措施上要落实,并加强施工质量管理,密切注意抓好施工过程中每一个环节的质量,力争将隐患消除在成桩之前。因此在施工前要认真熟悉设计图纸及有关施工、验收规范,核查地质和有关灌注桩方面的资料,对灌注桩在施工过程中可能会发生的一些问题进行分析后制订出施工质量标准、验收实施方案和每根桩的施工记录,以便有效地对桩基施工质量加以控制。

1成孔质量的控制

成孔是混凝土灌注桩施工中的一个重要部分,其质量如控制得不好,则可能会发生塌孔、缩径、桩孔偏斜及桩端达不到设计持力层要求等,还将直接影响桩身质量和造成桩承载力下降。因此,在成孔的施工技术和施工质量控制方面应着重做好以下几项工作。

1.1采取隔孔施工程序。

钻孔混凝土灌注桩和打入桩不同,打人桩是将周围土体挤开,桩身具有很高的强度,土体对桩产生被动土压力。钻孔混凝土灌注桩则是先成孔,然后在孔内成桩,周围土移向桩身土体对桩产生动压力。尤其是在成桩初始,桩身混凝土的强度很低,且混凝土灌注桩的成孔是依靠泥浆来平衡的,故采取较适应的桩距对防止坍孔和缩径是一项稳妥的技术措施。

1.2确保桩身成孔垂直精度

这是灌注桩顺利施工的一个重要条件,否则钢筋笼和导管将无法沉放。为了保证成孔垂直精度满足设计要求,应采取扩大桩机支承面积使桩机稳固,经常校核钻架及钻杆的垂直度等措施,并于成孔后下放钢筋前作井径、井斜超声波测试。

1.3确保桩位、桩顶标高和成孔深度。

在护筒定位后及时复核护筒的位置,严格控制护筒中心与桩位中心线偏差不大于50mm,并认真检查回填土是否密实,以防钻孔过程中发生漏浆的现象。在施工过程中自然地坪的标高会发生一些变化,为准确地控制钻孔深度,在桩架就位后及时复核底梁的水平和桩具的总长度并作好记录,以便在成孔后根据钻杆在钻机上的留出长度来校验成孔达到深度。

虽然钻杆到达的深度已反映了成孔深度,但是如在第一次清孔时泥浆比重控制不当,或在提钻具时碰撞了孔壁,就可能会发生坍孔、沉渣过厚等现象,这将给第二次清孔带来很大的困难,有的甚至通过第二次清孔也无法清除坍落的沉渣。因此,在提出钻具后用测绳复核成孔深度,如测绳的测深比钻杆的钻探小,就要重新下钻杆复钻并清孔。同时还要考虑在施工中常用的测绳遇水后缩水的问题,因其最大收缩率达1.2%,为提高测绳的测量精度,在使用前要预湿后重新标定,并在使用中经常复核。

为有效地防止塌孔、缩径及桩孔偏斜等现象,除了在复核钻具长度时注意检查钻杆是否弯曲外,还根据不同土层情况对比地质资料,随时调整钻进速度,并描绘出钻进成孔时间曲线。当钻进粉砂层进尺明显下降,在软粘土钻进最快0.2m/min左右,在细粉砂层钻进都是O.015m/min左右,两者进尺速度相差很大。钻头直径的大小将直接影响孔径的大小,在施工过程中要经常复核钻头直径,如发现其磨损超过10mm就要及时调换钻头。

1.4钢筋笼制作质量和吊放

钢筋笼制作前首先要检查钢材的质保资料,检查合格后再按设计和施工规范要求验收钢筋的直径、长度、规格、数量和制作质量。在验收中还要特别注意钢筋笼吊环长度能否使钢筋准确地吊放在设计标高上,这是由于钢筋吊笼放后是暂时固定在钻架底梁上的,因此,吊环长度是根据底梁标高的变化而改变,所以应根据底梁标高逐根复核吊环长度,以确保钢筋的埋入标高满足设计要求。在钢筋笼吊放过程中,应逐节验收钢筋笼的连接焊缝质量,对质量不符合规范要求的焊缝、焊口则要进行补焊。同时,要注意钢筋笼能否顺利下放,沉放时不能碰撞孔壁;当吊放受阻时,不能加压强行下放,因为这将会造成坍孔、钢筋笼变形等现象,应停止吊放并寻找原因,如因钢筋笼没有垂直吊放而造成的,应提出后重新垂直吊放;如果是成孔偏斜而造成的,则要求进行复钻纠偏,并在重新验收成孔质量后再吊放钢筋笼。钢筋笼接长时要加快焊接时间,尽可能缩短沉放时间。

1.5灌注水下混凝土前泥浆的制备和第二次清孔

清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。从泥浆在混凝土钻孔桩施工中的护壁和清孔作用,我们可以看出,泥浆的制备和清孔是确保钻子L桩工程质量的关键环节。因此,对于施工规范中泥浆的控制指标:粘度测定17—20min;含砂率不大于6%;胶体率不小于90%等在钻孔灌注桩施工过程中必须严格控制,不能就地取材,而要专门采取泥浆制备,选用高塑性粘土或膨润土,拌制泥浆必须根据施工机械、工艺及穿越土层进行.配合比设计。

灌注桩成孔至设计标高,应充分利用钻杆在原位进行第一次清孔,直到孔口返浆比重持续小于1。10—1.20,测得孔底沉渣厚度小于50mm,即抓紧吊放钢筋笼和沉放混凝土导管。沉放导管时检查导管的连接是否牢固和密实,以防止漏气漏浆而影响灌注。由于孔内原土泥浆在吊放钢筋笼和沉放导管这段时间内使处于悬浮状态的沉渣再次沉到桩孔底部,最终不能被混凝土冲击反起而成为永久性沉渣,从而影响桩基工程的质量。因此,必须在混凝土灌注前利用导管进行第二次清孔。当孔口返浆比重及沉渣厚度均符合规范要求后,应立即进行水下混凝土的灌注工作。

2成桩质量的控制

2.1为确保成桩质量,要严格检查验收进场原材料的质保书(水泥出厂合格证、化验报告、砂石化验报告),如发现实样与质保书不符,应立即取样进行复查,对不合格的材料(如水泥、砂、石、水质),严禁用于混凝土灌注桩。

2。2钻孔灌注水下混凝土的施工主要是采用导管灌注,混凝土的离析现象还会存在,但良好的配合比可减少离析程度,因此,现场的配合比要随水泥品种、砂、石料规格及含水率的变化进行调整,为使每根桩的配合比都能正确无误,在混凝土搅拌前都要复核配合比并校验计量的准确性,严格计量和测试管理,并及时填入原始记录和制作试件。

2.3为防止发生断桩、夹泥、堵管等现象,在混凝土灌注时应加强对混凝土搅拌时间和混凝土坍落度的控制。因为混凝土搅拌时间不足会直接影响混凝土的强度,混凝土坍落采用18cm—20cm,并随时了解混凝土面的标高和导管的埋人深度。导管在混凝土面的埋置深度一般宜保持在2m—4m,不宜大于5m和小于1m,严禁把导管底端提出混凝土面。当灌注至距桩顶标高8m—10m时,应及时将坍落度调小至12cm—16cm,以提高桩身上部混凝土的抗压强度。在施工过程中,要控制好灌注工艺和操作,抽动导管使混凝土面上升的力度要适中,保证有程序的拔管和连续灌注,升降的幅度不能过大,如大幅度抽拔导管则容易造成混凝土体冲刷孔壁,导致孔壁下坠或坍落,桩身夹泥,这种现象尤其在砂层厚的地方比较容易发生。在灌注过程中必须每灌注2m3左右测一次混凝土面上升的高度,确定每段桩体的充盈系数,《建筑施工操作规程》规定桩身混凝土的充盈系数必须大于l。同时要认真进行记录,这对日后发现有问题的桩或评价桩的质量有很大作用。

钻孔灌注桩的整个施工过程属隐蔽工程项目,质量检查比较困难,如桩的各种动测方法基本上都是在一定的假设计算模型的基础上进行参数测定和检验,并要依靠专业人员的经验来分析和判读实测结果,同一个桩基工程,各检测单位用同一种方法进行检测,由于技术人员的实践经验的差异,其结论偏差很大的情况也时有发生。通过十几年来几十个钻孔灌注桩工程的施工实践,得出这样一个结论,即加强桩基工程检测是一个手段,要保证钻孔灌注桩的施工质量,其关键还在于人。强调现场管理人员要有高度责任心,以防为主,对桩基各个施工环节要充分重视并精心施工,只有这样桩基的质量控制才能得到保证。

制度专栏

返回顶部
触屏版电脑版

© 制度大全 qiquha.com版权所有