液压系统泄漏原因分析控制措施 - 制度大全
职责大全 导航

液压系统泄漏原因分析控制措施

编辑:制度大全2019-05-06

液压系统中的工作液体,是在液压元件(包括管道)的容腔内流动或暂存的,循环的工作液体理应限于在规定的容腔内,然而由于压力、间隙等种种原因,有部分液体超过容腔边界流出,液体的“越界流出”现象称为泄漏。

影响泄漏的几个重要因素

液压系统在实际工作中,下面几个因素对泄漏有重要影响:

①工作压力和温升。液压系统压力越高越易泄漏。当工作压力大于密封耐压时,密封唇部易变形,中间发生凹陷,从而增大了接触宽度。实践表明,当压力从零增大到0.1MPa时,其接触宽度将是压力为零时的4倍。压力作用下接触宽度的增加,使摩擦力矩增加,也使磨损加剧、温升提高,泄漏增加,进而影响密封的使用寿命。油温过高,润滑油膜变薄,摩擦力加大,磨损加剧,密封材料老化增快,使之变硬变脆,并可能很快导致泄漏。随着油液温度的增高,其密封寿命将急剧下降,温度每增加10℃,密封寿命将缩短约1/3。

②转速。轴的转速不仅影响到密封的泄漏,而且由于转速的改变,将引起温升、动载等变化,严重影响到密封的工作寿命。

③工作介质的清洁度。液压系统的工作介质是液压油,如果油液不洁,或由于机械对元件在运转中产生的磨损粉末和切屑粉末,以及外部侵入的灰尘,一旦进入油液,油质将变差,形成油泥和固形杂质,引起密封唇口与元件表面的划伤,从而导致密封的急剧磨损,泄漏增加。

④工作介质的粘度和橡胶材料。由于密封件上橡胶与不同油液的亲和性不同,因而会出现橡胶的膨胀或收缩,一般来说,工作介质粘度越低,越易泄漏,越高越不易泄漏。

为控制液压系统的泄漏,必须从检测、正确选用和使用密封件等入手。

1泄漏检测首先对液压系统的泄漏原因进行诊断,这是控制泄漏的关键。

2密封件的正确选用密封大多数采用具有弹性或易变形的材料,密封材料的正确选用是决定密封性能、防止泄漏的主要因素。密封件的材料一般应具备下列要求:抵抗工作介质侵蚀的能力强,长期工作体积和硬度变化小;弹性和压缩复原性好,永久变形小;材料敏感性好,不渗漏;具备适当的机械强度和硬度;具有能与密封面贴含的柔软性和弹性;耐低温和高温性能好,高温下不分解不软化,低温下不硬化;既不腐蚀,也不粘在金属表面上;耐臭氧性和耐老化性好,经久耐用;加工制造方便,价格低。任何一种材料往往不能全面满足上述这些要求,使用时应根据工作条件、要求来选择。

3密封件的安装为使密封可靠、寿命长,在设计密封槽时,要有适当的压缩率,不能过大也不能过小,过大则压缩应力增加,摩擦力增大,加快密封磨损,亦易产生扭曲破坏,寿命缩短,有时造成装配困难;过小,则密封性不好,易泄漏。零件设计时要有导向角,以免装配时损伤密封件。安装时,尽量避免过大拉伸,以免变形。特别注意的是必须保证密封唇口部端面垂直于轴的中心线,否则产生的偏移会造成唇口单边的局部磨损,不能形成泵汲。

4实际工作中注意事项

①要控制液压系统的油温。油温过高,润滑油膜变薄,摩擦力加大,磨损加剧,密封材料老化增快,使之变硬变脆,并可能很快导致泄漏。

②液压系统中应尽量减少管接头,据统计有30%~40%的泄漏在管接头处。因此要选择结构合适的管接头。液压系统中常用的管接头有扩口式、卡套式和焊接式三类。三种接头各有特点,应根据工作可靠性和经济性进行选择。

③选择合适的液压元件,提高元件的表面精度。如系统不要求有快速切换,则应选择湿式电磁阀,因它寿命长,冲击小,推杆处无动密封,消除了推杆部位引起的泄漏。

④在易于进入粉尘、灰尘的液压元件或密封处,增加挡尘装置,如防尘环、挡尘罩等。防止设备长时间超压和超转速运行。

⑤保持油液的清洁,定期更换油液。

篇2:浮顶油罐沉盘原因分析预防措施

1前言

浮顶油罐在油库中应用十分广泛,浮顶是一覆盖在油面上,并随油面升降的盘状结构物,又称浮盘。由于浮顶与油面间几乎不存在气体空间,因而可以极大地减少油品损耗,同时在增加油品储存安全性和保护环境等方面也起到了明显的作用,更可获得可观的经济效益。浮顶油罐分为外浮顶和内浮顶两种,外浮顶罐是一种全敞口容器,盘状浮顶随油面升降;内浮顶是装有浮盘的拱顶罐。沉盘事故是浮顶油罐生产作业时非常忌讳的严重恶性设备事故之一,且发生事故后的复原处理十分困难。该类事故的发生,一方面反映了设计、施工、管理等方面的严重缺陷,另一方面又造成大量油品泄漏,严重影响生产,污染环境,并构成重大火灾隐患。由于结构等方面的原因,内浮盘沉盘是该类油罐的主要事故,人们比较重视;而因为外浮顶油罐沉盘事故在油品储运事故中较为少见,人们没有给予足够的重视。

2外浮顶油罐浮盘故障资料

将某罐区油品车间1997~2005年外浮顶油罐浮盘故障进行统计,在12起浮盘故障中,1起因罐体变形卡盘,1起因浮盘滑梯损坏发生沉盘,2起因来油串气卡盘,4起因浮盘顶中央排水不畅险些造成沉盘,1起因浮盘腐蚀穿孔漏油发生沉盘,3起因浮盘腐蚀穿孔漏油不得不停工。这表明,日常对浮顶罐及其附件设施的检查和维护十分重要,同时如G104#、G105#、G106#罐使用已有20多年,期间也进行过多次大修,浮舱下底板已严重减薄,该油品车间外浮顶油罐在运行过程中,存在着不少隐患,如果不能及时发现和消除事故隐患,很可能再次发生沉盘事故,从而威胁到罐区安全生产,也会造成较大的经济损失。

3外浮顶油罐沉盘事故原因分析

3.1浮盘和外浮顶油罐的结构特点

浮盘的结构形式有双盘式和单盘式两种。

双盘式浮盘是由直径比油罐内径小400mm的顶板、底板和周边的竖向边缘环板焊接而成的,顶、底板之间设有若干竖向安装的环向隔板和径向隔板,将浮盘分隔成若干互不连通的隔舱,以免底板出现局部泄漏时液体漫流到整个浮盘内,导致浮盘沉没。双盘式浮盘一般用于容量不超过5000m3的中小型浮顶罐。

?单盘式浮盘,周边为环形用径向隔板分隔为若干互不连通的隔舱,中间为厚度不小于5mm的单层钢板,隔舱与单层钢板间用角钢连接。单盘式浮盘广泛用于容易大于5000m3的浮顶罐。

3.2两起外浮顶油罐沉盘事故的经过及原因

20**年9月5日9时20分,某公司油品车间柴油岗位操作工在巡检过程中,发现正在收装置来油的G106#罐,罐顶检尺平台栏杆变形,浮盘顶滑梯倾斜,一侧滑轮从导轨脱落,浮盘被滑梯顶穿,穿孔处有柴油溢上浮盘顶,浮盘开始下沉。

事故发生后,调查事故发现,事故的直接原因是由于滑梯下端滑轮轴没有按要求安装防护铜套,导致滑轮轴长期磨损断开,扶梯下端侧倾下落,造成浮盘表面变形,浮盘上浮时被顶穿漏油。事故的间接原因是由于对油罐检修方案制订不完善。在20**年大修时车间对G106#罐没有安排滑梯检修内容,以致一直没有发现滑梯滑轮轴未装轴套,使隐患不能得到消除;对油罐附件的检查不细致,未能及时发现隐患。

2005年4月30日16时26分,某公司油品车间8#汽油罐区外浮顶5000m3油罐G802#罐顶可燃气报警仪发生报警,当时G802#正在收焦化汽油,液位高9.645m,汽油岗位操作人员发现可燃气报警仪报警后,立即赶赴现场,发现G802#罐周围油气味较大,油罐中央排水管有少量汽油流出来,爬上罐顶,发现G802#罐顶浮盘向北侧倾斜,浮盘上集有汽油,浮盘开始下沉。

事故发生后,调查事故发现,事故的直接原因是外浮顶罐G802#在收油的过程中,浮盘浮舱底板发生腐蚀穿孔漏油,由于浮舱进油导致浮舱失稳,发生倾斜卡住导向柱,导致沉盘。间接原因是油罐浮盘导向柱局部变形、强度不足,U型螺栓强度不足,在浮盘失稳发生倾斜后被卡折弯,使得浮盘不能正常上浮,同时在罐内收入油品的顶托下,导致浮盘倾斜加剧,最后下沉;同时也暴露出车间设备管理工作不到位。

3.3两起外浮顶油罐沉盘事故的教训

(1)虽然在事故处理过程中没有造成事故扩大,但在沉盘的过程中情况十分危险,罐内油品液位较高,油品为轻质油,闪点低,一旦在沉盘的过程中由于撞击、摩擦或雷击等产生火花,引燃油品,后果将不堪设想,可能造成重大火灾事故。

(2)车间制定的油罐检修方案不够全面,检修的质量存在问题,如G106#罐,没有安排滑梯的检修,主管部门审查把关有漏洞,未发现检修技术方案中没有滑梯检修的项目。如G802#罐,该罐距上一次大修不到2年,就发生浮舱钢板腐蚀穿孔,证明当时的检测检修防腐就存在问题,有关人员没有把好检修质量关。

(3)对油罐储存介质对设备的腐蚀认识不足,如G802#,该罐长期储存焦化汽油,对油罐设备的腐蚀明显比其他汽油要强,设备受腐蚀较严重。

(4)油罐的日常检查和管理不到位,有关人员没有严格按照油罐安全检查要求进行检查,虽然存在浮顶油罐大修时防腐质量有问题;罐顶上凹凸不平积水腐蚀;浮舱内部空间太小,难以防腐,平时检查较困难;导向管的检修、检测规程没有明确;但操作人员未能及时发现设备缺陷和事故隐患,日常检查的管理人员也未能及时诊断和发现隐患,设备主管未能监督到位,职工的安全责任制没有得到严格认真的落实。

3.4外浮顶油罐沉盘主要原因

(1)浮盘变形,浮盘在长期频繁运行过程中,要受到油品腐蚀、油品温度变化、气候变化、储罐基础沉降、罐体的变形、浮盘顶滑梯安装、浮盘附件是否完好等因素的影响,浮盘几何形状和尺寸发生变化,浮盘逐渐变形,出现表面凹凸不平。变形后浮盘在运行中,由于各处受到浮力不同,以致浮盘倾斜,浮盘量油导向管卡住,导致油品从密封圈及自动呼吸阀孔跑漏到浮盘上而沉盘。

(2)油罐和浮盘施工质量差,如罐体的直径、椭圆度、垂直度、表面凹凸不合要求、浮盘变形与歪斜、导向柱倾斜、导向柱有间歇、油罐的一、二次密封安装不好等,也易导致沉盘事故。

(3)浮顶中央排水系统不畅通,当遇到暴雨时,导致大量雨水不能及时排空,易发生沉盘事故。正常运行时,浮顶油罐上的浮盘能随着罐内油品液位的升降而自由浮动。当出现浮盘上重力加大或因外力卡住浮盘而不能自由动作时,则会因快速收油而使浮盘淹没,最终沉底。中央排水管在迅速排空罐顶积水方面起着至关重要的作用,应适当提高其质量等级和技术标准,因此,无论检修更新或日常?

(4)油罐检修不够细致、不够全面,检修的质量不过关,油罐设施、安全附件检修中存在漏洞,安装不合格,防腐质量差等,也易导致事故的发生。

(5)工艺条件不佳、操作不当,如收油时,来油串入大量的气体或进油速度过快,油品中含气量较多,使浮盘在罐内产生“漂移”,发生“气举”现象,导致浮盘受力不均匀,处于摇晃失稳状态,将易造成沉盘事故。

(6)检查和维护不到位,罐体和浮盘没有做到定期认真检查,浮盘顶滑梯上下端轮轴、中央排水系统、浮盘导向柱、浮盘自动呼吸阀、浮盘表面、浮盘安全附件、浮舱、浮盘一、二次密封、油罐内表面防腐等存在隐患,不能及时发现和消除,易引发事故。

4预防外浮顶油罐沉盘措施

(1)外浮顶油罐的施工质量必须符合设计要求。新罐投用前质量验收要认真把关,做好油罐充水浮盘开降试运,要求浮盘升降平稳,密封良好,附件完好。

(2)认真抓好油罐的检修工作,严把检修质量关。主要部门对方案认真审查把关,在检修前必须详细全面检查油罐(包括各种附件)的状况,逐项确认,使检修方案做到全面、准确,防止出现漏项。应加强油罐检修的现场监督、交出验收工作,对检修项目必须到现场逐项确认,加强对施工单位和施工过程的管理,提高检修质量。尤其对隐蔽工程更应加强中间验收工作,防止出现检修质量事故。

(3)加强日常的检查和维护。浮盘顶滑梯上下端轮轴要定期加润滑油;中央排水系统设施完好,排水畅通;浮盘导向柱、浮盘自动呼吸阀、浮盘表面、浮盘安全附件、浮舱内、浮盘一、二次密封、油罐内表面防腐等,都要按要求定期进行检查和维护,及时了解设备状况,对油罐及其附件应作全面、细致的检查,尤其对罐内储存腐蚀性强的介质,更要加强监控,确保及时发现和消除事故隐患。

(4)改善工艺条件,严格按章操作。上游装置要切实抓好平稳生产,避免波动,控制好来油不串气和来油温度,严格控制进油速度,严格按章操作,杜绝违章作业。

(5)加强日常巡检工作。提高巡检的质量和发现问题的能力,使隐患能得到及时发现和处理。修订油罐安全附件检查要求及细则,完善设备管理制度,强化各项设备管理制度的执行,加强抽检力度和经济责任制考核。

(6)认真落实安全生产责任制。明确管理职责,不断增强工作责任心,进一步加强对技术人员的业务培训和传帮带工作,提高管理人员的技术和管理素质。

篇3:泄漏预防的技术措施

一、提高认识,加强管理

首先,从思想上,要树立“预防泄漏就等于提高经济效益”的认识。试想,泄漏轻则造成物料损失、停产,重则厂毁人亡,哪里还谈得上经济效益呢而预防则能起到事半功倍的效果。

其次,完善管理、按章行事,是防止泄漏的重要措施。

事实上,各种物质的泄漏往往都能从管理上找到漏洞。制定一套完善的管理措施是非常必要的,如“巡回检查制”;强化劳动纪律;经常对职工进行业务培训和职业教育,提高技术素质和责任感。职工要熟悉生产工艺流程和设备,了解、掌握泄漏产生的原因和条件,才能做到心中有数,以及早采取措施,减少泄漏发生。

第三,要加强立法,以提高管理者的责任。美国联邦法律规定,新建油罐必须采取防腐措施,按有关规范安装,并配置泄漏检测和冒顶报警装置,石油及化工产品储罐必须设置二次封闭;同时要求石油公司监测、报告油罐的泄漏,并进行泄漏预防及控制对策的研究。从1994年起,美国就要求新建和更新的管道必须设置智能清管器收发装置,对管道定期进行检测。对违法者予以重罚。

我国对锅炉压力容器的制造、安装和使用的管理,制定了《锅炉压力容器安全监察暂行条例》。应该进一步健全法制,加大执法力度。

但是,由于人的失误不可能避免,还必须依靠多种技术措施,进行综合治理。

二、可靠性设计

为减少泄漏的发生,在设计上应采取提高可靠性的技术措施。例如,航天器由上百万个零部件组成,又需要经受苛刻的条件,极易发生事故,但是由于对可靠性的高度重视,火箭上天前必须进行严格的热试车和测试检查,与航空、陆上各种交通工具比较,载人航天器有着最好的安全飞行记录。

1.紧缩工艺过程

可靠性理论告诉我们,环节越多,可靠性越差。

当前,化工行业将紧缩工艺过程作为提高生产装置安全性的一项关键技术,即尽量缩小工艺设备,用危害性小的原材料和工艺步骤,简化工艺和装置,减小危险物存储量。

2.生产系统密闭化

生产工艺中的各种物料流动和加工处理过程应该全部密闭在管道、容器内部,实现“搞油不见油”。

3.正确选择材料和材料保护措施

材料选用的正确与否,直接关系到设计的成败。材质要与使用的温度、压力、腐蚀性等条件相适应,能够满足耐高温、强腐蚀等苛刻条件。不能适应的要采取防腐蚀、防磨损等保护措施。

胜利油田乐安、单家寺等稠油热采油田的高压注蒸汽管道(350℃、17.5MPa),投用时间从45天~11年不等,在1994~1996年间接连发生管道爆裂事故。原因是国产20G碳钢缺少炉外精炼工艺,质量不稳定,不耐氢蚀以及水质差等。现改用15CrMo合金钢,并配合化学除氧等措施,解决了腐蚀爆裂问题。

另如在含硫化氢及硫蒸气腐蚀环境中,各种金属材料的耐腐蚀性铝的耐腐蚀性最好,且其机械性能和价格都使之成为高硫油加氢精制反应装置上密封垫的首选材料。

4.冗余设计

为了提高可靠性,应提高设防标准,要提倡合理的多用钢材,而不是挖空心思节约钢材,比如在强腐蚀环境中,壁厚一般都设计有一定的腐蚀裕量,重要的场合可使用双层壁。我国现行的结构设计标准安全度较低,应大幅度提高。

5.降额使用

对生产设施最大额定值的降额使用,是提高可靠性的重要措施。

设施的各项技术指标(特别是工作压力)是指最大额定值,在任何情况下都不能超过,即使是瞬时的超过也不允许。要综合考虑异常情况、异常反应、操作失误、杂质混入以及静电、雷击等引起的后果,比如要重视防震设计。如台湾石化公司为了防震,投资500亿新台币改善防震设施,在1999年9月台湾大地震中,没有发生油罐移位、破裂泄漏事故;而电力系统防震等级普遍较低,没经得起地震的考验,台中、协和两电厂的发电机组主汽机漏油引起火灾,造成大面积停电。

6.合理的结构形式

结构形式是设计的核心,是由多种因素决定的。为了避免零件的磨损,要有一个润滑系统,进而为了防止润滑油泄漏,尽量使用固体润滑剂。为避免设备和管道冻裂,须采取保温、伴热等措施。

中石化从本质安全管理和可靠度出发,提出球罐底部接管应最小化。在重要的泵、塔、容器等存在危险因素较多的地方增加遥控切断阀,采用双密封机械以及设置中压蒸汽灭火设施等。欧洲LPG(或C2、C3)球罐设计标准中要求,底部物料进出管线宜设一根,底部进出口阀门加设遥控电动切断阀,并放置于保护堤之外,发生泄漏时,不必到罐底切断第一只阀门。

如由上海石化与美国大陆谷物公司合资建设的金地液化气工厂,按API标准,配置了先进和周全的安全保障设施。2×50000m3大型低温常压液化气储罐采用安全系数很高的双壳体结构,外壳为500mm厚的钢筋混凝土整体水泥浇铸,是一座坚固的圆柱形防爆墙;低温罐底部和侧面没有一根管道,全部管道均由罐顶部出入;设置高液位报警及进出罐遥控切断阀连锁控制。

正确选择连接方法,并尽量减少连接部位。由于焊接在强度和密封性能上效果较好,应尽量采用焊接。

压力管道尽量采用无缝钢管,且宜采用焊接,但由于直径<25mm的管道焊接强度不佳,且易使焊渣落入管内引起管道堵塞,应采取承插管件连接,或采用锥管螺纹联接。对于强腐蚀性尤其是含HF等介质的易产生缝隙腐蚀的管道,不得在螺纹处施以密封焊,否则一旦泄漏,后果不堪设想。要考虑振动和热应力的影响,对于容易产生应力载荷的部位,应采取减震、热胀补偿等消除应力措施,防止焊缝破裂或连接处破坏而造成泄漏。

阀门内漏可能造成反应失控,可设两个阀门串连以提高可靠性。为防止误操作,各种物料管线应按规定涂色,以便区分。阀门的开关应有明显标志,采用带有开关标志的阀门,对重要阀门采取挂牌、加锁等措施。

如果泵输送的介质温度达到自燃点以上,应能遥控切断泵。

7.正确选择密封装置

密封结构设计应合理。采用先进的密封技术,如机械密封、柔性石墨、液体密封胶,改进落后的、不完善的密封结构。正确选择密封垫圈,在高温、高压和强腐蚀性介质中,宜采用聚四氟乙烯材料或金属垫圈。如果填料密封达不到要求,可加水封和油封。许多泵改成端面机械密封后,效果较好,应优先选用。

8.变动密封为静密封,也是密封技术的突破。如泵和原动机之间,使用磁力传动,取消密封结构,这种密封传动称为封闭型传动。还有封闭型谐波齿轮传动、曲轴波纹管传动等,但是主要的还是磁力传动。

磁力传动由内磁转子、密封隔套、外磁转子等零件组成,如同电动机的定子与转子之间被一层隔套隔开。当外磁转子受到外力作用而旋转时,内磁转子就在磁场的带动下而随外磁转子一起转动。

磁力传动结构简单,易于制造和装配,使用寿命长。如磁力泵,在80年代中期已成为屏蔽泵的调整产品,有稳定增长的趋势。此外,磁力传动还用于磁力釜、截止阀等地方。

9.设计应方便使用维修

设计时应考虑装配、操作、维修、检查的方便,同时也有利于处理应急事故和及时堵漏。开关设在便于操作处。阀门尽量设置在一起,空中阀门应设置平台,以便操作。有密封装置的部位,特别是动密封部位,要留有足够的空间,以便更换和堵漏。法兰和压盖螺栓应便于安装和拆卸,空间位置不能太小;对于容易出现泄漏以及重要的部位和设备,应设副线、备用容器和设备。

三、设置齐全、可靠的防漏安全装置

人们在与泄漏的斗争中,创造了许多预防措施和安全装置,如安全阀、压力表、液位计等预防装置,有效地减少了泄漏发生,保障了安全生产。

1.防爆泄压装置

当出现超高压力等异常情况发生时,安全设施是防范泄漏事故的最后一道屏障,如果这一道屏障失去作用,那么泄漏就将不可避免地发生。各类安全阀件要做到灵敏可靠,绝不能成了聋子的耳朵—摆设。

安全阀、呼吸阀,用与防止设备超压引起爆裂。

爆破片用于防止有突然超压和爆炸危险的设备爆炸。

放空管可用来紧急排泄物料。

火炬用于将安全阀外泄的气体、紧急放空、设备检修等必须排放的可燃物料燃烧掉。

还有一些辅助措施,如为了防止杂质进入密封面产生泄漏,在阀门和密封装置处设置过滤器、排污管、防尘罩、隔膜;疏水器前的过滤器;轴封处的防尘罩;安全阀前为防止结晶和异物侵入而设的爆破膜片。

2.检测、报警监控仪表

生产参数检测仪表可使人及时掌握流量、压力、温度、液位等工作参数,而自动化系统能实现自动报警、控制,如有条件可安装电视监视系统,方便巡查。

容器液位计,是防止容器内介质泄漏的重要仪表。常见的种类有:玻璃管、玻璃板、电接触(电极)、浮球(磁翻板)、浮筒、静压(或差压)、电容、超声波、光纤传感器、雷达波法以及核辐射式等。

盛装易燃易爆物料的压力容器应避免使用玻璃管(板)液位计,以免玻璃管易被撞击破裂后造成泄漏,可改用磁浮子液位计等先进、可靠的仪表。对于常压储罐,可用透明塑料管,不易破碎。

中石化集团规定,单罐400m3以上的液化石油气罐都要配上高液位报警及其连锁系统和快速切断阀。

当今仪表正向着自动化、数字化的趋势发展。但我国油罐液位的检测方法,直到今天还是靠工人“上罐检尺”,劳动强度大,工作效率低,而且由于疏忽、检测不及时而造成冒顶、抽空等事故时有发生,严重影响到安全运行。采用液位自动检测技术后,工人坐在值班室内,就可准确地知道油罐液面。

液位计的可靠性也相当重要,如果液位计失灵,造成液位失控,危险性更大。如加拿大蒙特利尔市的一座石油化工厂,因为一个丁烷球罐液位计发生故障,导致丁烷大量外溢,引发火灾爆炸,6个大型丁烷、原油、汽油贮罐连续爆炸,炸片横飞,其中一根长9m的球罐支柱飞出350m,击中变电室,使整个蒙特利尔市停电,数栋房屋起火,这次事故损失额约1183万美元。

3、隔离措施,工业下水道在各区(生产区、辅助生产区等)之间应设水封隔开。

四、日常维护措施

生产装置状况不良常常是引发泄漏事故的直接原因。因此,及时检修非常重要。

生产装置在新建和检修投产前,必须进行气密性检测,确保系统无泄漏。

平时,生产装置要经常进行检查、保养、维修、更换,及时发现并整改隐患,以保证系统处于良好的工作状态。如发现配件、填料破损要及时维修、更换,及时紧固松弛的法兰螺丝。

必须定期对装置进行全面检修,通过预防性地更换改进零部件、密封件,消除泄漏隐患。如金陵石化在对炼油厂二套常减压常压塔进料段进行联合检查时,发现衬里开裂,气孔有缺陷,每周期都出现切向进料处焊缝泄漏,造成塔壁迅速腐蚀。改为径向进料后,消除了多年的隐患。

至于检修周期,国外已能做到3年1修,而国内大多还停留在3年2修的水平上。石家庄炼油厂重油催化裂化装置通过技术检测和局部检查、每季度对易腐蚀部位测量壁厚等措施,及时消除事故隐患,保证了设备的安全运行。1999年5月实现了“三年一修”,创造了国内运行周期最长的记录。

如果设备老化、技术落后,泄漏此伏彼起,就应该有计划地对其更新换代,从根本上解决泄漏问题。

下面重点谈谈无损检测和试压。

1、无损检测

压力容器、锅炉、管道(重点是弯头、三通及焊缝)等关键部位,易出现腐蚀、磨损、裂纹、变形、结垢等缺陷。无损检测可以对壁厚、裂纹等缺陷的损伤程度及发展趋势进行预测,从而使检修有的放矢,避免失修或过剩维修。

常规的无损检测技术有超声波、*射线、磁粉检查、电磁感应、涡流、着色渗透、红外热成像等。超声波对裂纹检出率高,也可用于测厚,但需要耦合剂,检测效率较低。

常规的无损检验方法存在很多缺点和不足,如抽查检验的盲目性大,易造成漏检;检验周期长,工作量大。

声发射技术可以为射线或超声波等检测方法制定检验方向,和常规的无损检测结合起来,可以减少盲目抽检,从而缩短停产检验时间。据统计,采用常规检测方法,按20%射线探伤计,每个卧罐需要拍片30~50张,每个球罐需要拍片150张左右,还不能保证找到所有危险缺陷。而采用声发射技术,每个容器只需拍片10张左右,还不会放过一个危险源。这样就大大减少了检验工作量。如果声发射检验没有发现危险源,就不必再开罐检验,省略了常规的无损检验。

在对锅炉等压力容器进行水压试验时,若加上声发射监测,效果会更好。因为试压时,如果出现破裂泄漏,这种较大的缺陷可以立即被发现,但是不能发现在试验时微小裂痕的亚临界扩展,也就是发现不了“预后不良”的危险缺陷,甚至由于压力试验反而扩大了这种缺陷。尽管容器顺利通过了超压试验,但是在长期投入运行后,势必造成缺陷的失稳扩展,造成泄漏。所以,单纯水压试验评价质量的方法不全面,在水压试验中,进行声发射监测,可以得到试验过程中某些缺陷的信号。

声发射现在主要用于评价压力容器的服役寿命,可以不停产在线检测,检验速度快,是在用压力容器定期检验方法的发展方向。胜利油田引进了美国PAC公司生产的SPARTAN型20通道声发射检测系统,在大型液化气储罐等压力容器的定期检测中使用,效果良好。

2、试压

水压或气压试验是最普通的检测管道及压力容器质量的方法,是预防泄漏的重要措施。生产装置安装及大修投产前,必须首先进行水压试验,然后做气密性试验。

水压试验就是往系统内充满水,增压到一定压力(试验压力一般是工作压力的1.1~1.5倍),然后封闭,观察压力降。气密性试验是压缩空气充入系统(压力是设计压力的1.05倍)。

进行水压或气压试验,必须严格按照规程标准来进行,《石油化工设备维护检修规程》对压力容器的耐压试验有明确的规定。气压试验比水压试验危险性大。新建管道必须用水试压,不允许用气试压。

耐压试验和无损探伤是从不同角度对压力容器进行检验的两种不同的方法,二者不能相互代替。经常有这样的情况,耐压试验合格的设备,无损探伤却发现缺陷。因此,耐压试验仅仅是对承压设备短时强度和气密性的考查。同时,耐压试验对设备来说也是一次过载。断裂力学指出,裂纹的扩展与裂纹处应力大小有关,随着应力的增加,裂纹扩展速度亦加快,所以不能随便地、多次重复做耐压试验。对于来历不明(无设计资料、不明材质等)的容器,不能盲目进行耐压试验,不能企图通过耐压试验来检漏或反推工作压力。

五、操作措施

控制正常生产的操作条件,如压力、温度、流量、液位等。要防止出现操作失误和违章操作,减少人为操作所致的泄漏事故。为此,有“操作前思考30秒”的提法。

六、控制泄漏发生后损失的措施

1.装设泄漏报警仪表

如可燃气体报警器、火灾报警器等。

2.将泄漏事故与安全装置连锁

应采用自动停车、自动排放、自动切除电源等安全连锁自控技术措施。一般来说,与监控系统连锁的自动停车系统速度快,仪表报警后由人工停车较慢,大约需要3~15min。

3.采用工艺控制装置

当设备和管道断裂、填料脱落、操作失误以致发生泄漏等特殊情况时,为防止介质大量外泄,可能引起着火、爆炸而应设置停车、紧急切断物料的安全装置。

紧急截止阀(断流阀),在管道中间增加断流阀来系统分段,能够中止向泄漏处供应物料,可以减少泄漏量,危险性较大的储槽等重要装置应设置远距离遥控切断阀。

过流阀也称快速阀,一般装在液化石油气储罐或汽车、铁路槽车的液相管和气相管出口上。

单向阀,又叫止回阀,只允许介质沿一个方向流动,用以防止倒流。

反向密封装置(专利:.2),能够在压力仪表一旦泄漏时迅速堵塞泄漏。

4、设立泄漏物收集装置,下面给出几个例子。

安全防护罩:法兰接头和阀门是薄弱环节,安全防护罩可以把法兰和阀门全部包容在保护罩内,一旦发生泄漏,泄漏的物质被限制在其内部。保护罩上有观察窗,能清晰地察看和检查其中阀门的实况,同时,它还有可更换的PH值指示器,泄漏发生后会改变颜色。如果泄漏出的物质需要回收的话,可选用有丝扣塑料嘴的防护罩,通过软管将泄漏物质回收。

防火堤:就是油罐区内围绕油罐而构筑的堤堰,它可以把油罐损坏泄漏的油品围在堤内,起到防止泄漏油品外流、控制油罐火灾蔓延的作用。但是有些单位,忽视了防火堤的作用,平时缺少维护和管理,使其存在漏洞。一旦发生泄漏,就可能导致油品外溢,加大事故损失。例如,1993年9月27日,南京炼油厂一座10000m3浮顶油罐溢油着火后,大量油火从防火堤的雨水排水口流出,险些烧毁排水沟下游的炼油装置。这个雨水排水口平时根本没人管,任其敞开,终于酿成大祸。

事故氯气处理装置:在氯碱生产过程中,工艺和设备故障造成前后工序失衡就可能造成氯气泄漏。上海天原化工厂研制了事故氯气处理装置,能在氯气外泄可能之时,紧急启动使系统由正压变成负压,成为防止泄漏的有效手段。通常整个氯气处理工序设两套处理装置,一套在电解槽出口,与湿式氯气水封相连;另一套设置在氯气压缩机出口,与机组排气管相连。设置在电解槽出口的事故氯气处理装置的启动与电解槽出口压力连锁。即当电解槽总管刚出现正压时,该处理装置的碱液循环泵及抽吸鼓风机便自动开启,16~20%的碱液送入吸收塔内,自上而下喷淋,与正压冲破水封进入喷淋吸收塔的逆向吸收,未能吸收的不含氯气的尾气被鼓风机抽吸放空。设在压缩机出口的处理装置的启动与机组的停机信号及与电解槽直流供电系统连锁。当机组因故停机时,该处理装置的碱液循环泵及抽吸鼓风机便自动开启,将氯气管网(输出)中倒回的氯气经排气管抽吸入事故氯气事故喷淋吸收塔进行吸收,惰性气体放空。

5、采用泄漏防火、防爆装置

自动喷淋水的洒水装置,可形成水幕,将系统隔离,控制气体扩散方向;用蒸汽、惰性气体(氮气)吹扫流程,可置换、吹散、稀释油气;还有消防泡沫灭火设施等。

篇4:石油工业泄漏预防措施

亡羊补牢,不如防患于未然。

实践证明,泄漏以后的治理往往需要付出成倍的代价。对生产设施采取积极的预防措施,可以有效地减少泄漏的发生,减轻其危害。因此,重视泄漏预防,进行超前投入,既有必要,又有经济效益。然而“有钱买棺材,没钱吃药”的现象在今天仍然比比皆是。

第一节泄漏产生的原因

石油工业中的泄漏产生的原因很多,归纳起来主要有以下几个方面:

一、人为因素

1.麻痹疏忽

由于市场经济的激烈竞争,为了降低成本,追求高额利润,人们急功近利,往往存有侥幸心理,有意忽视安全,如缩小安全系数、减免安全保护设施,各种“麻痹大意、疏忽”等造成的失误层出不穷;有时对急于投入生产的新技术认识有限,尚没有完全掌握伴随之而来的副作用,也会造成泄漏事故。

2.管理不善

管理和技术好比是人的大脑和手脚,缺一不可。管理的科学化甚至比技术更为重要,就像大脑比手脚更重要一样。生产现场的跑、冒、滴、漏正是其管理落后的标志,各种泄漏事故往往都能从管理上找到漏洞。

3.违章操作

违反安全规定,不按程序操作是造成泄漏的最重要的原因。由于操作人员工作不认真、想当然、技术不熟练、误操作造成泄漏事故的例子屡见不鲜。引起泄漏的错误操作通常有:操作不平稳,压力和温度调节忽高忽低;气孔、油孔堵塞,未及时清扫;不按时添加润滑剂,导致设备磨损;不按时巡回检查、发现和处理问题,如溢流冒罐等;误关阀门和忘记操作等。

二、材料失效

构成设施材料的失效是产生泄漏的最主要的直接原因。因此研究材料失效机理,是防止泄漏的有效手段。据统计,腐蚀、裂纹、磨损等是导致材料失效、造成泄漏的主要原因;此外,地震等自然灾害以及人为破坏也会引起破坏性泄漏。

1.材料本身质量问题

如钢管焊缝有气孔、夹渣或没焊透,铸铁管有裂纹、砂眼,水泥管被碰裂等。

2.材料破坏而发生的泄漏

如输送腐蚀性强的流体,一般钢管在较短时间内就会被腐蚀穿孔;输送高速的粉料,钢管会被磨蚀损坏;还有材料因疲劳、老化、应力集中等造成强度下降等。

3.因外力破坏导致泄漏

如不法分子在管道上打孔盗窃,野蛮施工的大型机动设备的碾压、铲挖等人为破坏;地震、滑坡、洪水、泥石流等造成管道断裂,车辆碰撞造成管道破裂,施工造成破坏。

4.因内压上升造成破坏引起泄漏

如水管因严寒冻裂,误操作(管道系统中多台泵同时投入运行,或关闭阀门过急)引发水击造成管道破裂。

三、密封失效

密封是预防泄漏的元件,也是容易出现泄漏的薄弱环节。

密封失效的原因主要是密封的设计不合理、制造质量差、安装不正确等,如设计人员不熟悉材料和密封装置的性能,产品不能满足工况条件造成超压破裂,密封结构形式不能满足要求,密封件老化、被腐蚀、磨损等。

所谓的“无泄漏”泵也不是绝对的。某油田输油泵投产时就用了磁力泵,没有动密封,但由于轴承损坏,窜轴磨坏玻璃钢隔离套,导致泄漏、着火事故。

第二节泄漏预防的措施

搞清了产生泄漏的原因,也就确定了防泄漏的措施。为了提高可靠性,就应该构筑起阻止泄漏的层层防线。

一、提高认识,加强管理

首先,从思想上,要树立“预防泄漏就等于提高经济效益”的认识。试想,泄漏轻则造成物料损失、停产,重则厂毁人亡,哪里还谈得上经济效益呢而预防则能起到事半功倍的效果。

其次,完善管理、按章行事,是防止泄漏的重要措施。

事实上,各种物质的泄漏往往都能从管理上找到漏洞。制定一套完善的管理措施是非常必要的,如“巡回检查制”;强化劳动纪律;经常对职工进行业务培训和职业教育,提高技术素质和责任感。职工要熟悉生产工艺流程和设备,了解、掌握泄漏产生的原因和条件,才能做到心中有数,以及早采取措施,减少泄漏发生。

第三,要加强立法,以提高管理者的责任。美国联邦法律规定,新建油罐必须采取防腐措施,按有关规范安装,并配置泄漏检测和冒顶报警装置,石油及化工产品储罐必须设置二次封闭;同时要求石油公司监测、报告油罐的泄漏,并进行泄漏预防及控制对策的研究。从1994年起,美国就要求新建和更新的管道必须设置智能清管器收发装置,对管道定期进行检测。对违法者予以重罚。

我国对锅炉压力容器的制造、安装和使用的管理,制定了《锅炉压力容器安全监察暂行条例》。应该进一步健全法制,加大执法力度。

但是,由于人的失误不可能避免,还必须依靠多种技术措施,进行综合治理。

二、可靠性设计

为减少泄漏的发生,在设计上应采取提高可靠性的技术措施。例如,航天器由上百万个零部件组成,又需要经受苛刻的条件,极易发生事故,但是由于对可靠性的高度重视,火箭上天前必须进行严格的热试车和测试检查,与航空、陆上各种交通工具比较,载人航天器有着最好的安全飞行记录。

1.紧缩工艺过程

可靠性理论告诉我们,环节越多,可靠性越差。

当前,化工行业将紧缩工艺过程作为提高生产装置安全性的一项关键技术,即尽量缩小工艺设备,用危害性小的原材料和工艺步骤,简化工艺和装置,减小危险物存储量。

2.生产系统密闭化

生产工艺中的各种物料流动和加工处理过程应该全部密闭在管道、容器内部,实现“搞油不见油”。

3.正确选择材料和材料保护措施

材料选用的正确与否,直接关系到设计的成败。材质要与使用的温度、压力、腐蚀性等条件相适应,能够满足耐高温、强腐蚀等苛刻条件。不能适应的要采取防腐蚀、防磨损等保护措施。

胜利油田乐安、单家寺等稠油热采油田的高压注蒸汽管道(350℃、17.5MPa),投用时间从45天~11年不等,在1994~1996年间接连发生管道爆裂事故。原因是国产20G碳钢缺少炉外精炼工艺,质量不稳定,不耐氢蚀以及水质差等。现改用15CrMo合金钢,并配合化学除氧等措施,解决了腐蚀爆裂问题。

另如在含硫化氢及硫蒸气腐蚀环境中,各种金属材料的耐腐蚀性铝的耐腐蚀性最好,且其机械性能和价格都使之成为高硫油加氢精制反应装置上密封垫的首选材料。

4.冗余设计

为了提高可靠性,应提高设防标准,要提倡合理的多用钢材,而不是挖空心思节约钢材,比如在强腐蚀环境中,壁厚一般都设计有一定的腐蚀裕量,重要的场合可使用双层壁。我国现行的结构设计标准安全度较低,应大幅度提高。

5.降额使用

对生产设施最大额定值的降额使用,是提高可靠性的重要措施。

设施的各项技术指标(特别是工作压力)是指最大额定值,在任何情况下都不能超过,即使是瞬时的超过也不允许。要综合考虑异常情况、异常反应、操作失误、杂质混入以及静电、雷击等引起的后果,比如要重视防震设计。如台湾石化公司为了防震,投资500亿新台币改善防震设施,在1999年9月台湾大地震中,没有发生油罐移位、破裂泄漏事故;而电力系统防震等级普遍较低,没经得起地震的考验,台中、协和两电厂的发电机组主汽机漏油引起火灾,造成大面积停电。

6.合理的结构形式

结构形式是设计的核心,是由多种因素决定的。为了避免零件的磨损,要有一个润滑系统,进而为了防止润滑油泄漏,尽量使用固体润滑剂。为避免设备和管道冻裂,须采取保温、伴热等措施。

中石化从本质安全管理和可靠度出发,提出球罐底部接管应最小化。在重要的泵、塔、容器等存在危险因素较多的地方增加遥控切断阀,采用双密封机械以及设置中压蒸汽灭火设施等。欧洲LPG(或C2、C3)球罐设计标准中要求,底部物料进出管线宜设一根,底部进出口阀门加设遥控电动切断阀,并放置于保护堤之外,发生泄漏时,不必到罐底切断第一只阀门。

如由上海石化与美国大陆谷物公司合资建设的金地液化气工厂,按API标准,配置了先进和周全的安全保障设施。2×50000m3大型低温常压液化气储罐采用安全系数很高的双壳体结构,外壳为500mm厚的钢筋混凝土整体水泥浇铸,是一座坚固的圆柱形防爆墙;低温罐底部和侧面没有一根管道,全部管道均由罐顶部出入;设置高液位报警及进出罐遥控切断阀连锁控制。

正确选择连接方法,并尽量减少连接部位。由于焊接在强度和密封性能上效果较好,应尽量采用焊接。

压力管道尽量采用无缝钢管,且宜采用焊接,但由于直径<25mm的管道焊接强度不佳,且易使焊渣落入管内引起管道堵塞,应采取承插管件连接,或采用锥管螺纹联接。对于强腐蚀性尤其是含HF等介质的易产生缝隙腐蚀的管道,不得在螺纹处施以密封焊,否则一旦泄漏,后果不堪设想。要考虑振动和热应力的影响,对于容易产生应力载荷的部位,应采取减震、热胀补偿等消除应力措施,防止焊缝破裂或连接处破坏而造成泄漏。

阀门内漏可能造成反应失控,可设两个阀门串连以提高可靠性。为防止误操作,各种物料管线应按规定涂色,以便区分。阀门的开关应有明显标志,采用带有开关标志的阀门,对重要阀门采取挂牌、加锁等措施。

如果泵输送的介质温度达到自燃点以上,应能遥控切断泵。

7.正确选择密封装置

密封结构设计应合理。采用先进的密封技术,如机械密封、柔性石墨、液体密封胶,改进落后的、不完善的密封结构。正确选择密封垫圈,在高温、高压和强腐蚀性介质中,宜采用聚四氟乙烯材料或金属垫圈。如果填料密封达不到要求,可加水封和油封。许多泵改成端面机械密封后,效果较好,应优先选用。

8.变动密封为静密封,也是密封技术的突破。如泵和原动机之间,使用磁力传动,取消密封结构,这种密封传动称为封闭型传动。还有封闭型谐波齿轮传动、曲轴波纹管传动等,但是主要的还是磁力传动。

磁力传动由内磁转子、密封隔套、外磁转子等零件组成,如同电动机的定子与转子之间被一层隔套隔开。当外磁转子受到外力作用而旋转时,内磁转子就在磁场的带动下而随外磁转子一起转动。

磁力传动结构简单,易于制造和装配,使用寿命长。如磁力泵,在80年代中期已成为屏蔽泵的调整产品,有稳定增长的趋势。此外,磁力传动还用于磁力釜、截止阀等地方。

9.设计应方便使用维修

设计时应考虑装配、操作、维修、检查的方便,同时也有利于处理应急事故和及时堵漏。开关设在便于操作处。阀门尽量设置在一起,空中阀门应设置平台,以便操作。有密封装置的部位,特别是动密封部位,要留有足够的空间,以便更换和堵漏。法兰和压盖螺栓应便于安装和拆卸,空间位置不能太小;对于容易出现泄漏以及重要的部位和设备,应设副线、备用容器和设备。

三、设置齐全、可靠的防漏安全装置

人们在与泄漏的斗争中,创造了许多预防措施和安全装置,如安全阀、压力表、液位计等预防装置,有效地减少了泄漏发生,保障了安全生产。

1.防爆泄压装置

当出现超高压力等异常情况发生时,安全设施是防范泄漏事故的最后一道屏障,如果这一道屏障失去作用,那么泄漏就将不可避免地发生。各类安全阀件要做到灵敏可靠,绝不能成了聋子的耳朵—摆设。

安全阀、呼吸阀,用与防止设备超压引起爆裂。

爆破片用于防止有突然超压和爆炸危险的设备爆炸。

放空管可用来紧急排泄物料。

火炬用于将安全阀外泄的气体、紧急放空、设备检修等必须排放的可燃物料燃烧掉。

还有一些辅助措施,如为了防止杂质进入密封面产生泄漏,在阀门和密封装置处设置过滤器、排污管、防尘罩、隔膜;疏水器前的过滤器;轴封处的防尘罩;安全阀前为防止结晶和异物侵入而设的爆破膜片。

2.检测、报警监控仪表

生产参数检测仪表可使人及时掌握流量、压力、温度、液位等工作参数,而自动化系统能实现自动报警、控制,如有条件可安装电视监视系统,方便巡查。

容器液位计,是防止容器内介质泄漏的重要仪表。常见的种类有:玻璃管、玻璃板、电接触(电极)、浮球(磁翻板)、浮筒、静压(或差压)、电容、超声波、光纤传感器、雷达波法以及核辐射式等。

盛装易燃易爆物料的压力容器应避免使用玻璃管(板)液位计,以免玻璃管易被撞击破裂后造成泄漏,可改用磁浮子液位计等先进、可靠的仪表。对于常压储罐,可用透明塑料管,不易破碎。

中石化集团规定,单罐400m3以上的液化石油气罐都要配上高液位报警及其连锁系统和快速切断阀。

当今仪表正向着自动化、数字化的趋势发展。但我国油罐液位的检测方法,直到今天还是靠工人“上罐检尺”,劳动强度大,工作效率低,而且由于疏忽、检测不及时而造成冒顶、抽空等事故时有发生,严重影响到安全运行。采用液位自动检测技术后,工人坐在值班室内,就可准确地知道油罐液面。

液位计的可靠性也相当重要,如果液位计失灵,造成液位失控,危险性更大。如加拿大蒙特利尔市的一座石油化工厂,因为一个丁烷球罐液位计发生故障,导致丁烷大量外溢,引发火灾爆炸,6个大型丁烷、原油、汽油贮罐连续爆炸,炸片横飞,其中一根长9m的球罐支柱飞出350m,击中变电室,使整个蒙特利尔市停电,数栋房屋起火,这次事故损失额约1183万美元。

3、隔离措施,工业下水道在各区(生产区、辅助生产区等)之间应设水封隔开。

四、日常维护措施

生产装置状况不良常常是引发泄漏事故的直接原因。因此,及时检修非常重要。

生产装置在新建和检修投产前,必须进行气密性检测,确保系统无泄漏。

平时,生产装置要经常进行检查、保养、维修、更换,及时发现并整改隐患,以保证系统处于良好的工作状态。如发现配件、填料破损要及时维修、更换,及时紧固松弛的法兰螺丝。

必须定期对装置进行全面检修,通过预防性地更换改进零部件、密封件,消除泄漏隐患。如金陵石化在对炼油厂二套常减压常压塔进料段进行联合检查时,发现衬里开裂,气孔有缺陷,每周期都出现切向进料处焊缝泄漏,造成塔壁迅速腐蚀。改为径向进料后,消除了多年的隐患。

至于检修周期,国外已能做到3年1修,而国内大多还停留在3年2修的水平上。石家庄炼油厂重油催化裂化装置通过技术检测和局部检查、每季度对易腐蚀部位测量壁厚等措施,及时消除事故隐患,保证了设备的安全运行。1999年5月实现了“三年一修”,创造了国内运行周期最长的记录。

如果设备老化、技术落后,泄漏此伏彼起,就应该有计划地对其更新换代,从根本上解决泄漏问题。

下面重点谈谈无损检测和试压。

1、无损检测

压力容器、锅炉、管道(重点是弯头、三通及焊缝)等关键部位,易出现腐蚀、磨损、裂纹、变形、结垢等缺陷。无损检测可以对壁厚、裂纹等缺陷的损伤程度及发展趋势进行预测,从而使检修有的放矢,避免失修或过剩维修。

常规的无损检测技术有超声波、*射线、磁粉检查、电磁感应、涡流、着色渗透、红外热成像等。超声波对裂纹检出率高,也可用于测厚,但需要耦合剂,检测效率较低。

常规的无损检验方法存在很多缺点和不足,如抽查检验的盲目性大,易造成漏检;检验周期长,工作量大。

声发射技术可以为射线或超声波等检测方法制定检验方向,和常规的无损检测结合起来,可以减少盲目抽检,从而缩短停产检验时间。据统计,采用常规检测方法,按20%射线探伤计,每个卧罐需要拍片30~50张,每个球罐需要拍片150张左右,还不能保证找到所有危险缺陷。而采用声发射技术,每个容器只需拍片10张左右,还不会放过一个危险源。这样就大大减少了检验工作量。如果声发射检验没有发现危险源,就不必再开罐检验,省略了常规的无损检验。

在对锅炉等压力容器进行水压试验时,若加上声发射监测,效果会更好。因为试压时,如果出现破裂泄漏,这种较大的缺陷可以立即被发现,但是不能发现在试验时微小裂痕的亚临界扩展,也就是发现不了“预后不良”的危险缺陷,甚至由于压力试验反而扩大了这种缺陷。尽管容器顺利通过了超压试验,但是在长期投入运行后,势必造成缺陷的失稳扩展,造成泄漏。所以,单纯水压试验评价质量的方法不全面,在水压试验中,进行声发射监测,可以得到试验过程中某些缺陷的信号。

声发射现在主要用于评价压力容器的服役寿命,可以不停产在线检测,检验速度快,是在用压力容器定期检验方法的发展方向。胜利油田引进了美国PAC公司生产的SPARTAN型20通道声发射检测系统,在大型液化气储罐等压力容器的定期检测中使用,效果良好。

2、试压

水压或气压试验是最普通的检测管道及压力容器质量的方法,是预防泄漏的重要措施。生产装置安装及大修投产前,必须首先进行水压试验,然后做气密性试验。

水压试验就是往系统内充满水,增压到一定压力(试验压力一般是工作压力的1.1~1.5倍),然后封闭,观察压力降。气密性试验是压缩空气充入系统(压力是设计压力的1.05倍)。

进行水压或气压试验,必须严格按照规程标准来进行,《石油化工设备维护检修规程》对压力容器的耐压试验有明确的规定。气压试验比水压试验危险性大。新建管道必须用水试压,不允许用气试压。

耐压试验和无损探伤是从不同角度对压力容器进行检验的两种不同的方法,二者不能相互代替。经常有这样的情况,耐压试验合格的设备,无损探伤却发现缺陷。因此,耐压试验仅仅是对承压设备短时强度和气密性的考查。同时,耐压试验对设备来说也是一次过载。断裂力学指出,裂纹的扩展与裂纹处应力大小有关,随着应力的增加,裂纹扩展速度亦加快,所以不能随便地、多次重复做耐压试验。对于来历不明(无设计资料、不明材质等)的容器,不能盲目进行耐压试验,不能企图通过耐压试验来检漏或反推工作压力。

五、操作措施

控制正常生产的操作条件,如压力、温度、流量、液位等。要防止出现操作失误和违章操作,减少人为操作所致的泄漏事故。为此,有“操作前思考30秒”的提法。

六、控制泄漏发生后损失的措施

1.装设泄漏报警仪表

如可燃气体报警器、火灾报警器等。

2.将泄漏事故与安全装置连锁

应采用自动停车、自动排放、自动切除电源等安全连锁自控技术措施。一般来说,与监控系统连锁的自动停车系统速度快,仪表报警后由人工停车较慢,大约需要3~15min。

3.采用工艺控制装置

当设备和管道断裂、填料脱落、操作失误以致发生泄漏等特殊情况时,为防止介质大量外泄,可能引起着火、爆炸而应设置停车、紧急切断物料的安全装置。

紧急截止阀(断流阀),在管道中间增加断流阀来系统分段,能够中止向泄漏处供应物料,可以减少泄漏量,危险性较大的储槽等重要装置应设置远距离遥控切断阀。

过流阀也称快速阀,一般装在液化石油气储罐或汽车、铁路槽车的液相管和气相管出口上。

单向阀,又叫止回阀,只允许介质沿一个方向流动,用以防止倒流。

反向密封装置(专利:.2),能够在压力仪表一旦泄漏时迅速堵塞泄漏。

4、设立泄漏物收集装置,下面给出几个例子。

安全防护罩:法兰接头和阀门是薄弱环节,安全防护罩可以把法兰和阀门全部包容在保护罩内,一旦发生泄漏,泄漏的物质被限制在其内部。保护罩上有观察窗,能清晰地察看和检查其中阀门的实况,同时,它还有可更换的PH值指示器,泄漏发生后会改变颜色。如果泄漏出的物质需要回收的话,可选用有丝扣塑料嘴的防护罩,通过软管将泄漏物质回收。

防火堤:就是油罐区内围绕油罐而构筑的堤堰,它可以把油罐损坏泄漏的油品围在堤内,起到防止泄漏油品外流、控制油罐火灾蔓延的作用。但是有些单位,忽视了防火堤的作用,平时缺少维护和管理,使其存在漏洞。一旦发生泄漏,就可能导致油品外溢,加大事故损失。例如,1993年9月27日,南京炼油厂一座10000m3浮顶油罐溢油着火后,大量油火从防火堤的雨水排水口流出,险些烧毁排水沟下游的炼油装置。这个雨水排水口平时根本没人管,任其敞开,终于酿成大祸。

事故氯气处理装置:在氯碱生产过程中,工艺和设备故障造成前后工序失衡就可能造成氯气泄漏。上海天原化工厂研制了事故氯气处理装置,能在氯气外泄可能之时,紧急启动使系统由正压变成负压,成为防止泄漏的有效手段。通常整个氯气处理工序设两套处理装置,一套在电解槽出口,与湿式氯气水封相连;另一套设置在氯气压缩机出口,与机组排气管相连。设置在电解槽出口的事故氯气处理装置的启动与电解槽出口压力连锁。即当电解槽总管刚出现正压时,该处理装置的碱液循环泵及抽吸鼓风机便自动开启,16~20%的碱液送入吸收塔内,自上而下喷淋,与正压冲破水封进入喷淋吸收塔的逆向吸收,未能吸收的不含氯气的尾气被鼓风机抽吸放空。设在压缩机出口的处理装置的启动与机组的停机信号及与电解槽直流供电系统连锁。当机组因故停机时,该处理装置的碱液循环泵及抽吸鼓风机便自动开启,将氯气管网(输出)中倒回的氯气经排气管抽吸入事故氯气事故喷淋吸收塔进行吸收,惰性气体放空。

5、采用泄漏防火、防爆装置

自动喷淋水的洒水装置,可形成水幕,将系统隔离,控制气体扩散方向;用蒸汽、惰性气体(氮气)吹扫流程,可置换、吹散、稀释油气;还有消防泡沫灭火设施等。

第三节钢铁及玻璃钢材料失效原因及对策

在石油工业中,碳钢是最常用的材料,其次是玻璃钢。

一、钢铁材料

对于钢铁来说,失效原因主要有腐蚀、磨损、裂纹等。

1、“腐蚀”触目惊心

人们通常看到的钢铁生锈,就是金属腐蚀现象。这种由于化学和电化学作用引起的材料损坏,就称为腐蚀。腐蚀会使金属材料减薄、变脆造成机件破坏、承受不了原工作压力而引起泄漏。据发达国家统计,由于腐蚀造成的经济损失占国民生产总值的2~4%,对于石油和化学工业则高达6%。

生锈只是腐蚀的一种形式,而且是最不具危险的形式,因为它使材料均匀减薄。而局部腐蚀如晶间腐蚀、应力腐蚀,是最具危险性的腐蚀形式,腐蚀速度快,最快的几个月就能腐蚀穿孔。在材料大部分还完好时,就使局部失去强度,造成突发性泄漏。

石油工业中的腐蚀问题大致可以分为三种类型:来自原油组份的腐蚀、生产中所用腐蚀性原料以及环境(大气和土壤)的腐蚀。我国油田的原油集输管道和污水管道普遍使用钢管,防腐能力差。胜利油田某油区金属集输管道平均腐蚀速度高达14mm/a,严重的不到半年就穿孔,造成大量油水外泄,大面积污染环境,不到两年就被迫全部更新。

2、磨损

磨损是指流体特别是有固体存在的流体对容器、管道及其设备的物理性磨蚀。

磨损一般发生在流动受阻及方向改变的地方,如管道弯曲半径过小,存在死角,在高速气流或粉料冲蚀下,局部可迅速被磨穿。天然气管道弯头处最容易因为冲刷磨损及腐蚀造成穿孔,其它部位还有泵壳、阀座、喷嘴、弯头、悬流器内壁、热偶等。在发生磨损的地方,如果还有腐蚀性介质存在,会加剧金属的冲蚀。如一些油田油井采出液中含砂,而且随着后期开采、大泵提液技术的广泛使用,携砂量增多,油田多相流(油、气、水、砂)集输管道底部因砂磨穿孔严重,最短的只用3个月就穿孔泄漏,表现为管道内壁成槽沟磨蚀穿孔。联合站旋流分离技术,由于采出液中含砂对旋流管的磨损,使用不到一年,流道就产生变形,使分离效率下降。磨损严重的不到三个月就穿孔,造成泄漏直至停产。催化裂化装置,大直径再生器在700℃以上高温下运行,万一脱落,将产生危险的后果,常常导致停产。

经验证明,磨损与流体速度、冲击角度、固体浓度及操作温度四个因素有关:冲蚀速率与气流速度的三次方成正比;20°~30°的冲击角度最具有破坏性;冲蚀速率随气流中的固体浓度增加而增加;钢的冲蚀阻力通常随操作温度上升而减小。

3、钢铁材料的保护

保护钢铁等金属材料的措施主要有两点:一是防腐蚀,二是防磨损。

常用的防腐蚀措施有:①使用耐腐蚀材料(如合金钢、不锈钢、玻璃钢等材料),如对于含H2S腐蚀环境(PH2S>300Pa)必须采用抗氢致开裂(HIC)钢材;②把金属和腐蚀介质隔离开来,如在金属表面加绝缘保护层,切断金属与腐蚀介质的联系;③外部补充电流以消除金属表面的电位差;④在介质中加入缓蚀剂;⑤消除腐蚀环境。

(1)保护层法

保护层法就像让士兵穿上铠甲一样,使用一层厚度薄、耐腐蚀的材料做隔离保护层,保护里面的金属材料。常用的有耐腐蚀性较强的金属、涂料、塑料等多种材料。

热喷涂是将熔融状态的材料,通过高速气流雾化喷射在零件表面上,形成保护层。

热喷涂技术被认为是解决锅炉“四管”腐蚀泄漏问题的最佳途径。西安交通大学采用等离子喷涂技术对“四管”进行防腐处理,喷涂材料为金属陶瓷,结果表明,金属陶瓷具有良好的耐热腐蚀性能和力学性能。全军装备维修表面工程研究中心采用电弧喷涂技术对电站锅炉水冷壁管进行防腐处理,取得了良好的效果。

(2)阴极保护法

阴极保护就是给遭受腐蚀的金属上通入足够的阴极电流,使得金属的电极电位变负,使腐蚀过程减缓。这是一种经济、可靠的防腐方法,保护效率高,已被广泛应用。

按照保护电流的来源,阴极保护又可分为外加电流法和牺牲阳极法两种。

外加电流法使用一个直流电源来提供保护所需要的电流。一般将金属对地电压作为控制指标,只要对地电位达到-0.85~-1.5V,就能起到良好的防腐效果。

牺牲阳极法,就是把比要保护的某种金属(如钢铁)更活泼、更容易腐蚀的金属(如锌、镁)与其连接,来替代钢铁的腐蚀。

由于保护涂层和阴极保护是结合使用的。涂层不可避免地存在微小的针孔,光靠它是不行的;若仅用加电保护,电量消耗过大,无法保护大面积、长距离。这两种方法结合在一起,防腐效果十分理想。这就像先在金属表面筑起“城堡”,而外部通入的电流就象流动的“哨兵”,两者互相补充,共保“城池”安全。

在煤气柜的腐蚀中,局部腐蚀,即点蚀穿孔是致命的,主要原因是被横架和立柱挡住而漏涂的钢板形成了腐蚀原电池的小阳极,而整体涂层较好的钢表面为大阴极,使小阳极迅速穿孔。由于涂层施工质量不好而形成的针孔,也同样导致局部点蚀穿孔。

气柜内壁选用富锌底漆与弹性聚氨酯涂料相配合,外壁选用锌底漆与氧化橡胶涂料相配合的防护方法是较为合理的。

(3)缓蚀剂

缓蚀剂是一种投加在腐蚀介质中的、能减缓或阻止金属腐蚀的化学物质,它能够吸附在金属表面,形成保护膜,阻滞电化学腐蚀过程的发生。

缓蚀剂在石油、天然气、工业水、海水、酸、大气及钢筋混凝土等环境中都有成功的应用。

胜利油田东营压气站从日本进口的100×104m3/d离心压缩机组,由于天然气中含微量H2S等原因严重腐蚀,威胁着机组的正常运行。中科院长春应用化学研究所研制的一种气相缓蚀剂(主要成分是粗轻吡啶),成功地解决了腐蚀问题,每年的药剂费不到10万元。

(4)消除腐蚀环境

电化学腐蚀离不开水,如果油气中没有水,也就避免了腐蚀。我国目前唯一的一条干含硫天然气管线是川东开江—长寿输气管,用脱水工艺保持天然气在最高压力、最低温度下的水分处于不饱和状态,避免了腐蚀、爆管和冻堵停产现象。

(5)防磨损

为了使设备免遭磨损,最好是除去磨蚀颗粒,如胜利油田孤东采油厂在油井井口安装多相流除砂器,较好地解决了集油管砂磨蚀穿孔的问题。而对于不能除去颗粒的情况,通常采用耐磨材料衬里。

耐磨陶瓷如Al2O3、ZrO2等耐磨材料,能有效地解决磨损问题。如胜利油田使用ZrO2陶瓷制做的出砂气井气嘴,解决了气嘴刺大难题,保证了气井安全正常生产;采用Al2O3工业陶瓷精铸原油分水旋流管,可延长使用寿命3~5年,降低成本40%。

碳化钨是一种硬质合金,耐磨,密度大,胜利油田孤东采油厂用它制做出砂油井抽油泵凡尔和凡尔座,减少了泵漏,延长了检泵周期。

铸石制品也具有良好的耐磨损、耐腐蚀性能,广泛用于矿山、冶金、石油、化工、电力等行业中的剧烈磨损、腐蚀的关键部位。实践证明,其耐磨强度是普通钢材的十几倍。

平顶山煤矿选煤厂张玮,则利用离心力原理,使磨面均匀受力,发明了“选矿用耐磨弯头”,使用寿命从20天提高到3个月以上,解决了煤浆管道的磨损难题。

二、玻璃钢

以合成树脂为胶粘剂,玻璃纤维作增强材料而制成的复合材料,称为玻璃纤维增强塑料。因其强度高,可以和钢铁相比,故又称“玻璃钢”(FRP)。

合成树脂常用的有:不饱和聚酯树脂、环氧树脂、酚醛树脂、呋喃树脂等。在增强纤维方面,除了玻璃纤维以外,还出现了碳纤维、硼纤维和有机纤维等。

玻璃钢具有密度小、强度高(相当于普通碳钢)、耐化学腐蚀性优良、施工工艺简单灵活等优点,质量良好的玻璃钢设备使用寿命可达15~25年。

玻璃钢在石油工业中得到了越来越广泛的应用,如制作管道、储罐、防腐保护层等。玻璃钢管道具有耐腐蚀、耐砂磨、重量轻、强度高、输送效率高、不易结蜡和结垢等优点,使用压力已经提高到24MPa,用于油气集输、污水输送等工程。玻璃钢储罐有取代钢罐的趋势,美国加油站已经普遍使用玻璃钢地下油罐。

玻璃钢已成为氯碱工业主要结构材料之一。早在20世纪50年代初,玻璃钢首先被用于收集热(93℃)、湿氯气以及来自石墨电极的有机物。这一应用取代了当时的标准材料酚醛石棉塑料。接着玻璃钢又被用于取代混凝土电解槽盖,解决了腐蚀后的混凝土碎块落入电解槽的问题。从此,玻璃钢被逐渐用于制造与氯气、盐水、碱液等接触的设备、管道系统。

玻璃钢也存在一些缺点,同金属相比,其弹性模量较低,长期耐温性一般在100℃以下,个别可达到150℃,低于金属和无机材料,对溶剂和强氧化性介质的耐蚀性也较差。

对于玻璃钢设备渗漏的检查,除肉眼观察外,还可用巴氏硬度计或针入度试验。

1.玻璃钢渗漏原因

玻璃钢在20世纪70~80年代,经历了一个由兴起到受怀疑的曲折过程,主要表现在:FRP管道和设备在酸、碱、盐等介质中使用一段时间(少则数周、长则1~2年时间),便出现冒汗现象,继而介质渗漏,严重时会出现较大的鼓泡或分层剥落,导致与FRP相连的基体(钢铁或混凝土等)受到介质的腐蚀而破坏。这是介质可从某点渗出,但其内部渗漏源可能在远离渗漏点处,因此,修复难度很大。如某油田数十立方米的盐酸储槽,开始使用就出现局部渗漏,在渗漏处周围几经修补、加厚处理均无济于事。渗漏一直是影响玻璃钢寿命的主要威胁。

造成玻璃钢渗漏的主要因素有:

(1)玻璃纤维未浸透树脂,使其构成的许多单丝本身不可避免地存在微裂纹,这样就成为扩散渗漏的通道。玻璃纤维的存在及其含量的高低是影响FRP抗渗性的主要因素。

(2)树脂在固化过程中,存在收缩和放热,而产生内应力。如果固化工艺处理不好,树脂内部就产生较大的内应力和微裂纹。此外,环氧树脂中的稀释剂(丙酮)的挥发、某些树脂(酚醛、呋喃)固化时还放出水分,使固化后的树脂内留下针孔,从而留下扩散渗透通道。

(3)树脂—纤维粘接界面处理不当。界面往往成为玻璃钢制品的薄弱环节,虽然可以通过加入偶联剂加以改善,但是要使之成为一体而无懈可击,是不可能的,何况在目前的施工中,相当部分没有经过偶联剂处理。

2.玻璃钢防渗措施

(1)在耐蚀玻璃钢中必须普遍采用富树脂防渗层。减少FRP中玻璃纤维的含量是改善抗渗性的主要方向。国外的长期实践经验指出,在某些苛刻条件(如高温湿氯气、盐水)下,要保证15~25年的寿命,富树脂层最小厚度约6.5mm。

(2)用热塑性塑料作玻璃钢内衬。将热塑性塑料(PVC、PP)的优良抗渗性和耐蚀性同FRP的高强度特性相结合,是改进FRP抗渗性的又一有效途径。为保证塑料与玻璃钢的良好粘接,塑料表面要进行处理,以免脱开。

(3)应用玻璃鳞片涂料与玻璃钢复合结构。由于玻璃鳞片在涂层中上下交错排列,形成独特的屏蔽结构,抗渗性能提高,可以替代塑料、橡胶、和玻璃钢衬里。由于我国玻纤表面毡生产较少,如用玻璃鳞片涂料(胶泥)取代富树脂层,是解决FRP渗漏问题的一条简便、易推广的途径。

(4)认真选材与施工。选用延伸率较高的树脂,可减少产生裂纹的机率;保证玻璃纤维对树脂的良好浸润;当连接FRP设备时,应打磨其表面使玻纤暴露出来,然后再刷胶泥连接;固化工艺要适当。

篇5:液化石油气储罐泄漏火灾风险预防控制措施

1.加强设备质量管理,杜绝泄漏现象

液化石油气储罐的设计、选材、加工,制造和安装应符合现行国家标准《钢制压力容器》GB150、《钢制卧式容器》JB4731和《压力容器安全技术监察规程》的有关规定。材料通常按第三类压力容器要求选择,罐体应进行热处理,以消除焊接过程中造成的应力变化,焊接要经过100%的损探伤,安装时应选择刚性不燃的坚固基础作为罐体基础。法兰、垫片和紧固件的压力等级应高于设计压力。储罐本体第一道法兰垫片应用符合聚四氟乙烯,不得采用其他耐油石棉法兰垫片。

埋地储罐应采用严格的防腐措施,防腐设计应符合国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》SY0007的有关规定,并应采用最高级别防腐绝缘保护层,储罐还应作阴极防腐,采用电化学防腐措施后,引出管道的阀门后要安装绝缘法兰隔断。

储罐在投用以前,必须严格按照《压力容器安全技术监察规程》进行强度和气密性试验。使用后,加强维护保养,定期进行开罐检验,从根本上保证设备的安全运行,防止设备故障导致泄漏。

2.合理设置储罐,降低泄漏风险

液化石油气储罐或储罐区与明火或散发火花地点、建筑物、堆场的防火间距应符合《建筑设计防火规范》GBJ16-87(20**年版)的要求。储罐之间的防火间距不宜小于相邻较大罐的直径,整个储罐的总容积超过3000m3时,应分组布置,组内储罐宜采用单排布置,组与组之间的防炎9距不宜小于20m,以防止火灾蔓延和便于进行火灾扑救。

储罐与储罐组四周应设防火堤,其高度为1.0~2.2m,使储罐漏液时不致于外流,并且通风较好,不会窝气。储罐区还应设置宽度不小于6m的环形消防车道,并宜设置至少2个安全出口。

储罐区应设置备用储罐,以供发生事故时倒罐用或作为开罐检查、检修的备用储罐。

储罐的进液管道和液相回流管道直接接入储罐内的气相空间,一旦管道发生泄漏事故,直接泄出去的是气体,其危害性比直接泄漏出液体要小得多。

储罐脱水排污应采用二次脱水装置,即脱水包,脱水包设计压力不应小于储罐设计压力,储罐至脱水包之间要有切断阀。在寒冷和严寒地区,从液化石油气储罐底部引出的脱水排污管的根部应加装伴热或保温装置,以防止排污管阀门及其法兰垫片冻裂。

在城市建成区内的加气站,液化石油气储罐应埋地设置,可减少暴露在地面上的易燃易爆化工设施,杜绝气站内因车辆频繁出入而碰撞液化石油气设备,造成大量泄漏的意外情况发生,避免了夏季液化石油气受热后引起压力升高造成泄漏,同时减小邻近火灾的影响,埋地储罐的阀件、管道等泄漏液化石油气时,也容易进行有效的堵漏,有利于降低泄漏风险,提高安全性。

3.规范安全操作,减少泄漏量

制订一套切实可行的安全管理办法和各项操作规程。加强操作人员的安全教育和业务培训,使之娴熟掌握操作技术及消防故障和隐患的方法,杜绝误操作,违章行为的发生。进入储罐区从事充气、检修和残液回收的操作人员应穿防静电服装和鞋。储罐操作人员定时对罐区内储罐的压力,液位、温度和安全装置及主要操作控制阀门进行安全巡查。严格执行动火检修制度。夏季要根据储罐温度变化,及时开启喷淋装置,冬季要注意排水防冻。

4.防止泄漏气体聚集

液化石油气储罐区宜布置在本单位或本地区全年最小频率风向的上风侧,不要建在窝风地带,应选择有良好通风的地段,以便泄漏出来的液化石油气能及时散去。

液化石油气储罐宜露天设置,严禁设在室内或地下室内,以防止泄出来的液化石油气气体在室内积聚,形成爆炸性危险气体。

储罐区内要严格控制低洼点,除必须设置的储罐阀门、操作井、地下卸液口、消防水池、地下消火栓、消防水泵接口等设施外,严禁设置地下和半地下建、构筑物装置。

5.设置防泄漏安全装置

储罐要设有液位,温度、压力测量仪表。液位测量应设高低液位报警;压力测量应设压力上限报警,较大容积的储罐,液位和压力的测量宜设远传二次仪表,防止超温、超压、超液位发生泄漏。

液化石油气储罐必须设有全启封闭式弹簧安全阀。大于100m3的储罐宜设有2个处于工作状态的安全阀,防止储罐超压泄漏。凡在安全阀与罐体间设置的阀,必须处于开启状态,并要有铅封。安全阀的开启压力不得超储罐的设计压力。安全阀要每年检验一次。

储罐区应设置紧急切断系统。该系统应能在事故状态下迅速关闭重要的液化石油气管道阀门和切断液化石油气泵、压缩机的电源,避免液化石油气大量外泄。在储罐的出液管道的进液管道等部位设置管道内置的紧急切断阀,紧急切断按钮安装在经常有人操作的区域附近,为了避免控制系统误动作,紧急切断阀应能由手动启动的遥控切断系统操纵关闭,只能手动复位,紧急切断阀宜为气动阀。

储罐的进液管、液相回流管和气相回流管上应设止回阀,出液管上宜设过流阀,止回阀和过流阀有自动关闭功能,可有效防止液化石油气管道发生意外泄漏事故。止回阀和过流阀设在储罐内,增强了储罐首级关闭的安全可靠性。储罐内未设置控制阀门的出液管道和排污管道,储罐的第一道法兰处最为危险,应在该处配备堵漏装置。

6.及时发现泄漏

为了能及时检测到液化石油气非正常超量泄漏,以便工作人员尽快进行泄漏处理,应在储罐区、卸车点周围等危险场所,特别是低洼的阀门操作井、地下卸液口等容易积聚液化石油气气体的地方,均应设置可燃气体浓度检测和报警装置,观察仪表要设置在昼夜有人值班的安全场所,其报警值应取液化石油气爆炸浓度下限的20%。罐区正常巡查的工作人员,应配备手提式防爆型可燃气体浓度检测报警器。检漏报警装置应定期检测保养,保证运转正常。

7.设置消防给水及灭火设施

罐区消防供水洞庭湖采用环状管网,给水干管不应少于2条,管径不少于150mm。为便于消防车向管网供水,还应设水泵结合器,且至少2个,罐区内应设消火栓,其间距一般应为60m装罐区等重点部位附近应设箱式消火栓,其保护半径应为30m,消火栓用水量为20L/s~45L/s(视储罐大小而定),大型罐区设固定带架水枪,其供水压力不小于0.35MPa,对卧式罐不小于0.25MPa。储罐上安装消防喷淋和水喷雾设施,供灭火和降温用。罐区内按规范配备相应的移动式灭火器材,如干粉灭火器等。

8.妥善处置泄漏事故

当发生液化石油气泄漏时,及时有效地堵漏,是防止火灾、爆炸、人员中毒等事故发生和控制其严重程度的重要手段,可采取关闭阀门、转移物料、带压堵漏、注水堵漏等多种措施进行堵漏。如果通过关闭上游阀门可控制泄漏,应立即设法关闭有关阀门,切断气源。如果储罐设有备用卸料储槽或与其他有剩余空间的液化石油气储罐连通,可将泄漏罐内的液化石油气转移,或打开火炬放空阀放空,以减缓泄漏速度和总的泄漏量。当液化石油气管道、法兰发生泄漏时,可利用预制的夹具和密封胶及密封胶注入工具进行带压堵漏,参照有关带压堵漏技术规定执行。当储罐底部或出口管线发生泄漏时,可通过底部的注水管线注入高压水将液化石油气液面垫起,使水成为泄漏物料,之后考虑堵漏或采取转移物料的措施。

熄灭液化石油气扩散区的一切火种。液化石油气扩散的区域,电气设备保持原来状态,不要开或关,及时切断该区域的总电源。并在事故现场四周设立警戒区,警戒区内不得有任何火源存在,严禁将任何火源带入警戒区。

使用喷雾开花水流或惰性气体稀释、驱散泄漏的液化石油气体,防止它达到爆炸浓度。对已着火的泄漏液化石油气体在切断气源的同时,向火区喷发灭火剂。在有条件的地方,可以开启氮气管道、水蒸气管道,使氮气和水蒸气充盈火区空间,窒息灭火。在火焰熄灭后,应防止残余液化石油气汽化扩散甚至复燃。

制度专栏

返回顶部
触屏版电脑版

© 制度大全 qiquha.com版权所有