化工泵用机械密封的泄漏原因防止措施 - 制度大全
职责大全 导航

化工泵用机械密封的泄漏原因防止措施

编辑:制度大全2019-05-04

化工反应装置中泵的密封泄漏是引起密封失效的主要原因。引起机械密封泄漏过早失效的因素很多,如:选型和安装问题、密封设计和制造问题以及设备本身存在的问题等。

各种泵是化工反应装置中最常用的基础设备之一,其机械密封性能是影响化工反应装置工作性能和生产效率的重要因素。在化工反应装置中泵的密封泄漏是引起密封失效的主要原因。引起机械密封泄漏过早失效的因素很多,如:选型和安装问题、密封设计和制造问题以及设备本身存在的问题等,分析密封失效原因,积极采取相应措施,从诸多的环节中排除不变和基本不变的因素,从而采取相应的预防或补救措施,以确保反应装置可靠和稳定运行是探讨的重点。

一、长炼化工泵的常见工况:

A、清洁流体介质;?

B、含固体颗粒、结晶体的介质

C、固体浓度高、粘度大,可流动性差的介质

二、机械密封泄漏失效的原因分析

密封泄漏是机械密封失效的主要表现形式,在实际工作中,重要的是从泄漏现象分析机械密封产生泄漏的原因。机械密封一般为内装式,常常需根据经验、现场观察及仪器测量分析来确定密封泄漏的原因。首先,弄清受损伤的密封件对密封性能的影响,然后依次对密封环、传动件、加载弹性元件、辅助密封圈、防转机构、紧固螺钉等仔细检查磨损痕迹。对附属件,如底座、轴套、密封腔体以及密封系统等也应进行全面的检查。此外,要了解设备的操作条件,以及以往密封失效的情况,在此基础上,进行综合分析,就会找出产生失效的根本原因,并采取有效措施,防止密封的泄漏失效。

1.由机械磨损引起的密封泄漏

机械磨损将引起密封副的正常配合关系被破坏,当端面出现一定的磨损,传动轴每转一转密封件都要作轴向位移和径向摆动,因此在每一次转动中,密封副端面都趋向于产生轻微的分离和泄漏。根据磨损痕迹可以判断运动和磨损情况,也可以确定密封泄漏的原因。例如,密封副磨损痕迹均匀,各零件的配合良好,这就说明传动部分的同轴度良好。这时密封端面产生的泄漏,可能不是由密封本身问题引起的。若泄漏量为常数,就意味着泄漏不是发生在两端面之间,有可能发生在其他部位上,如静密封处。再如,密封开始使用时就泄漏,且观察不到摩擦端面磨损痕迹,可能是旋转环相对于静止环不旋转或打滑,其原因可能是防转销松脱或折断,或是底座的孔径小于密封件的外径,由于安装不到位所致。

密封副中硬质环端面出现较深的沟槽,原因主要是传动部分的同轴度达不到安装要求,或密封的浮动性不好,传动时引起密封副端面分离,两者之间侵入较大颗粒,当颗粒嵌入较软的碳质端面内,造成硬质端面的磨损。密封副材料均采用硬质材料可防止该类磨损发生,因颗粒将无法嵌入任何一个端面,而是被磨碎后从两端面之间通过。

2.由热损伤引起的密封泄漏

主要是由于密封在使用过程中的过热引起,过热不仅引起密封副变形产生磨损,还可能引起热裂和疱疤。通常,在过大的热应力作用下密封环表面上出现径向裂纹,称为热裂。在短时间的机械负荷或热负荷作用下会出现热裂,例如由于干摩擦、冷却系统中断等热裂时密封环磨损加剧泄漏量迅速增长。对于平衡型密封,甚至密封环分开。为了避免热裂,必须掌握材料的机械-物理性能,在设计时考虑到可能产生热裂,并给定运转条件。

疱疤也是由于过热引起的,它主要是由于碳石墨、陶瓷等材料过热造成,因为非均质材料本身各组分的膨胀系数不同,粘结剂被挤出是这种损坏的原因。因此必须采用不同材料或利用外部结构措施来改变其散热条件。

介质润滑性差、过载、操作温度高、线速度高、配对材料组合不当等因素,或者是以上几种因素的叠加,都可以产生过大的摩擦热,若摩擦热不能及时散发,就会产生热裂纹。解决密封过热问题,除改变端面面积比、减少载荷外,采用静止型密封并加导流套强制将冷却循环液体导向密封面,或在密封端面上开流体动力槽来加以解决。

3.由腐蚀引起的密封泄漏

机械密封的腐蚀分为化学腐蚀和电化学腐蚀,腐蚀是机械密封产生泄漏并引起机械密封失效的最主要原因之一。由于密封接触腐蚀性介质就会产生表面腐蚀,甚至在表面各处产生剧烈腐蚀点而形成点蚀。在金属的晶界上产生的晶间腐蚀,会深入到金属的内部,并进一步破坏而引起断裂。

电化学腐蚀的形成是由于密封环两种金属在电介质溶液中的电差不同,而产生电位差,形成电池作用,发生电池腐蚀。

腐蚀的性能影响很大。由于密封件比主机的零件小,而且更精密,通常要选用比主机更耐腐蚀的材料。经验表明,压力、温度和滑动速度都能使腐蚀加速。密封件的腐蚀率随温度升高呈指数规律增加。处理强腐蚀流体时,采用双端面密封,可以最大限度减轻腐蚀对密封件的影响,因为它与工艺流体相接触的零件数量少。这也是在强腐蚀条件下,选择密封结构的一条最重要的原则。

根据密封的实际工作情况,合理选择耐腐蚀材料和热处理是防止密封在应用时产生泄漏的重要做法。例如,选用奥氏体不锈钢做密封环,由于其表面能形成氧化物或氢氧化物的保护膜使金属钝化而不受腐蚀。但奥氏体不锈钢却在450℃~850℃产生晶间腐蚀,因此材料要在1050℃下进行热处理。

4.由密封零件失效引起的密封泄漏

机械密封用辅助密封圈,以采用合成橡胶O形圈较多。机械密封零件失效大部分是辅助密封圈失效,机械密封由于泄漏而不能正常工作的一个主要原因也是因为O形圈失效引起的。O形圈失效的表现为老化、永久性变形、溶胀变形、扭曲及挤出损伤。因此,在选用O形圈时应考虑合成橡胶的安全使用温度,尽可能地选用截面较大的橡胶O形圈,适当提高硬度,采用沟槽式的装配结构,通过沉浸试验合理选材,必要时选用复合材料,如橡胶包覆聚四氟乙烯密封圈。安装时,应在槽内涂以润滑脂,保证其滚动自如。

弹簧、传动销等机械零件失效也常常引起机械密封的泄漏,在使用中,机械密封的弹簧失效形式有永久变形、断裂、腐蚀、蠕变或松弛等。传动销、传动螺钉等都能用来传递转矩,驱动密封件旋转。振动或安装位置偏斜、不同心等,都会使传动件磨损、弯曲甚至损坏。

5.介质浓度高、粘度大、可流动性差引起密封失效。

?A、由于介质粘度大,容易造成内装式机械密封弹簧堵塞,弹簧补偿失效,使机械密封补偿环(通常指动环)不能有效的贴紧非补偿环(通常指静环),至使密封失效;

?B、介质含固体颗粒浓度高、粘度大,可流动性差,容易造成泵的抽空,而倒至密封处于干摩擦状态,密封环产生热裂变,密封失效。

三、机械密封泄漏失效的现象及防止

在机械密封泄漏分析中,关键是找到其原因,进而采取措施。通过对机械密封泄漏的现象,如泄漏部位、泄漏量等情况的观察找到初步的原因或主要原因,再通过观察密封零件的损坏情况找到根本原因。有时这些过程是需要借助于仪器测量来完成的。

1.密封副端面之间泄漏的防止

错误的安装常常造成密封副端面之间泄漏,如:安装尺寸未达到图纸设计要求,非补偿环安装倾斜,端面变形,因此安装时必须仔细阅读安装说明书及附图,重新调整安装尺寸。若为压盖安装偏斜,应重新安装。同时检查密封环端面与压盖端面各点的距离是否一致,防转销是否进入密封环的凹糟中、是否顶到凹槽底部,总装时压盖螺钉要均匀锁紧。碳石墨环弹性模量低,易变形,一般说来,碳石墨环端面变形的原因有:箱体内夹杂金属碎片或污垢,局部受载;合成橡胶O形圈在介质中溶胀,体积增大,碳环受压而使端面变形;端面分离,弹簧阴塞,如因温度变化引起介质结晶、积垢,造成端面不能很好地贴合,弹簧被腐蚀而丧失强度也会产生同样的结果。对此须清除碎片,清洗箱体、底座,应根据介质性质更换O形圈,对于因腐蚀而产生的泄漏,一般需要改用合适的材料。

密封副端面不平,端面平面度、粗糙度未达到要求,或在使用前受到了操作破坏,因而产生泄漏。这时应重新研磨抛光或更换密封环。工作端面平面度可用平晶检查光干涉带来测定。

造成端面分离的情况还有:(1)同轴度误差、安装对中调整不良、各零件加工精度不佳而造成累计误差,连接螺栓中轴线偏差、传动轴直线超差或加工后产生变形等。机械密封部件安装(包括密封轴)后,应测量轴的径向跳动与端面跳动。(2)端面接触压力不足,这是因为轴(或轴套)与密封圈之间磨擦阻力过大使闭合减小,阻力增加是因为橡胶O形圈溶胀引起密封环卡滞。(3)轴可能因点腐蚀或电偶腐蚀而失去光滑的表面,从而增加摩擦力或密封圈的压缩量过大,当轴窜动时,补偿环随轴窜动致使端面不闭合,补偿环组件与轴的间隙过小。因此,必须校核温升引起的间隙减小量,轴必须具有合适的粗糙度。我们一般将轴与轴套配合部分进行磨削加工,确保精度。机械密封腔内密封液不洁净,应严格控制密封液中的杂质,定期更换密封液。(4)密封件本身具有渗透性,为确保密封件不渗透,经机械加工后的成品应进行一次浸渍处理。如果从密封件处产生大量泄漏,表明密封件可能已破裂,此时应检查操作条件以判明是因过载引起的破坏,还是由于安装不当造成的。

2.补偿环辅助密封圈处泄漏的防止

补偿环辅助密封圈处泄漏主要是由于辅助密封圈的安装、产品质量和其被损伤引起的,密封圈安装时受到损伤,是密封失效的常见原因,如表面有划痕,唇口被割伤。出现这种情况,多半是轴端未倒角或残留毛刺不清洁所致,要注意清除毛刺和保持清洁。轴上的键槽也会损伤密封圈,安装时应使用专用工具,避免密封圈受到损伤。还可通过调整轴的尺寸公差、形位公差及粗糙度加以处理。

辅助密封圈质量问题,如橡胶密封圈断面尺寸超差,压缩率不符合要求,出现质量问题,如错位、开模缩裂、修边过量、流痕、凹凸缺陷、飞边过大等,需用合格品替换。密封圈的衬质与介质不相容,应重新选用适宜的密封圈材料。

轴表面有腐蚀、麻点、凹坑和密封圈老化将使密封圈损坏或失效。在这种情况下应更换新轴、轴材料和密封圈,可在密封圈接触部位的轴表面镀铬或喷涂陶瓷。

3.非补偿环辅助密封圈处泄漏的防止

产生的原因可能是底座尺寸公差不符合设计要求,安装错误,密封圈的质量不良或密封圈的材质与介质不相容等。采取的措施有:应更换合格品,严格安装操作,选用适宜材料的密封圈。

4.其他接触零件部分泄漏的防止

箱体与底座结合面之间泄漏,是由于箱体与底座的配合面质量达不到要求和安装不当造成的。箱体与底座配合端面有缺陷,如凹坑、刻痕等,需整修或采用相应措施,可涂液体密封胶;安装时螺栓力过小,压缩垫片或密封圈时不能把接触面不平的凹坑填满,需加大螺栓力,或用较软的垫片,因为内压力总是使得密封底座与箱体端面趋于分离;垫片或密封圈受到损伤,应更换垫片或密封圈;安装时不清洁,异物进入其间,就清除异物,受损伤的密封垫片、密封圈应更换;底座刚度不够,安装时产生底座变形,这时应更换有足够刚度的底座;安装时螺栓受力不均匀,底座单边锁紧,应重新调整螺栓力。轴套处的泄漏量通常是稳定的,一般是由于安装不当,密封圈或垫片不符合要求或损伤而造成的。

五、结语

化工泵用机械密封泄漏失效的原因是复杂的,往往须在生产实践中不断总结经验,通过详细的观察和分析,并借助于仪器测量分析,才能找到机械密封的泄漏原因,从而采取有效的措施加以解决。在化工泵用机械密封的设计中,要充分掌握其工况条件,选用合适的密封机构和关键零件的材料,防止由于设计不当引起的密封失效。通过在生产中、实验中对失效原因的故障分析,对提高在化工企业中机械密封的应用技术水平,改进结构上的设计水平,提高装置的生产效率都有十分重要的意义。

篇2:主洗混料泵更换机械密封安全技术措施

一、现场概况

主厂房3205混料泵机械密封在生产过程中,出现漏料现象,且轴承组件需拆开清洗轴承。现根据生产需要,对3205混料泵机械密封及轴承组件进行更换。

二、检修准备

1、人员安排:

现场负责人:薛晨光

现场安全员:刘永平

参加施工人员:田瑞伟、史朝刚、李檀、原效龙

2、工器具准备:

重型电动扳手一台,紫铜棒,重型套筒扳手一套,2个24"活口扳手,2个5T吊带,撬棍2根、大锤、砂纸等。

三、检修方法及技术要求

1、混料泵运转平稳,无异响。

2、机械密封无漏料现象。

3、螺栓完整,无松动现象。

四、检修作业程序及主要工序

1、将3205混料泵及相关联设备3207合介泵停电挂牌,检修人员开停电票,由电工到主厂房配电室停电,确认无误后,挂“有人工作,禁止合闸”牌,由现场安全员通知集控室将3205混料泵及相关联设备3207合介泵打就地验电,验电结束后,挂现场停电牌,并通知检修负责人可以进行检修作业。

2、关闭3205主洗混料泵入料阀门,打开底流阀将出料管内积料排空。

3、拆卸泵体入料管软连接,再依次拆卸3205混料泵进、出料口短节螺栓及短节,若螺栓拆卸困难时,可借助气割将各连接螺栓割掉。

4、使用5T吊带预先吊挂好3205泵壳,卸下泵壳与泵体连接固定螺栓。借助天车,使用撬棍将泵壳与泵体分开,放置地面。在拆卸吊运泵壳期间,由检修负责人统一指挥,起重工与拆卸泵壳人员应相互配合,协调好,防止挤碰手脚。

5、使用内六角扳手卸下拆卸环,吊挂好叶轮,借助天车,卸下叶轮及护板,放置地面。用铜棒卸下轴套及机械密封组件,松开3205混料泵轴承组件压紧螺栓,卸下轴承组件与电机对轮处弹性柱销,使用天车将轴承组件放置叉车上,运至机修车间。

6、使用50T液压拉马将3205旧轴承组件处对轮拔下,用砂纸将新轴承组件轴打磨光滑,将新轴承组件放至提前制作好的龙门架中,在新轴承组件传动轴上涂抹润滑油,便于对轮的安装,借助千斤顶将拆卸下来的对轮安装至新轴承组件上。

7、将安装好的轴承组件安装至泵体托架上,紧固轴承组件压紧螺栓,将新轴套和机械密封组件依次装上。安装时应注意机械密封组件应平滑进入,禁止打、砸机械密封组件。

8、依次借助天车将叶轮、护板、泵壳安装至轴承组件上。装配叶轮时,螺纹处涂油脂,通过天车吊钩吊起叶轮,顺时针转动对轮使叶轮拧在轴上,通过拧轴承组件下方处的调整螺栓上后面的螺母,使轴承组件向前移动,使叶轮与护板之间的间隙调整为0.75mm。

9、恢复安装泵体进料口短节及入料软连接,并将各固定螺栓紧固到位。

10、由现场安全员确认无安全隐患后,撤掉工具、器材、人员,由检修人员至调度室签字,并由电工至主厂房配电室送电试车,由岗位司机验收。

五、安全风险评估

伤害类型:机械伤害、起重伤害、高空作业、摔伤、砸伤

危险源:高空坠物

六、安全技术措施及检修操作要求

1、严格执行停电挂牌制度。

2、严格遵守《选煤厂安全规程》和《选煤厂操作规程》。

3、由检修负责人统一指挥,并交代检修内容、程序及注意事项。

4、参加检修人员必须正确穿戴好劳动保护用品,并由现场安全员监督劳保穿戴情况。

5、作业人员必须认真学习本安全技术措施,在学习完成后进行考试,待考试合格后方可进行检修作业。

6、起重工等特种作业人员必须持证上岗。检修现场安排专人监护,在吊运各部件时设专人负责指挥。

7、在拆卸3205泵壳时,检修人员应相互配合,并设专人负责指挥。指挥负责人应注意观察吊装物四周情况,防止泵壳坠落等意外现象发生,以保证人员安全和设备完好。

8、禁止任何人在起重物下面通过或停留。禁止任何人站在起重物上。禁止人与物一起吊运。起重现场应当设警戒线。

9、电动葫芦在使用前,必须由维保单位检修人员对电动葫芦进行全方位的故障排查及隐患处理。

10、电动葫芦操作工在操作吊运过程中,不要带手套,手要相应的干净,避免污垢进入按钮里面。起重物体时不得斜吊。

11、检修场所应保持通风良好,进行气割工作前应先清除周围易燃物,并在作业场地需放置灭火器等消防设施,并采取相应的防护措施。

七、灾害预防及避灾路线

1、保持现场消防通道、人行过道畅通。

2、作业前,由现场负责人向所有参加检修作业人员交代清楚避灾逃生路线。

3、由现场安全员向所有检修作业人员讲解现场安全防护措施,个人防护注意事项,自救、互救知识等。

八、现场文明卫生及质量标准化要求

1、检修完成后,收拾工具,清理作业现场废铁废料,并归类放置,及时入库。

2、废铁、废料等废旧物资运至废料堆并摆放整齐。

九、其他

篇3:浅谈机械密封的腐蚀类型与防护措施

机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。机械密封出现损坏的情况较多,常见的损坏形式主要有腐蚀损坏、热损坏和机械损坏。其中腐蚀损坏危害性较大,由于机械密封特殊的结构形式及工作环境和条件不同,腐蚀损坏的形态也多种多样。

1机械密封的优缺点

机械密封又称端面密封,是旋转轴用动密封。因机械密封性能可靠,泄露量小,使用寿命长,功耗低,毋须经常维修,且能适应于生产过程自动化和高温、低温、高压、真空、高速以及各种强腐蚀性介质、含固体颗粒介质等苛刻工况的密封要求,故机械密封在化工、石油化工、炼油、医药、国防等工业部门中以获得广泛的应用。

机械密封与软填料密封比较,有如下优点:①机械密封可靠,在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填料密封的1/100;②机械密封使用寿命长,在油、水类介质中一般可达1~2年或更长时间,在化工介质中机械密封通常也能达半年以上;③摩擦功率消耗小,机械密封的摩擦功率仅为软填料密封的10%~50%;④轴或轴套基本上不受摩损;⑤维修周期长,端面磨损后可自动补偿,一般情况下,毋需经常性的维修;⑥抗振性好,对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;⑦适用范围广,机械密封能用于低温、高温、真空、高压、不同转速,以及各种腐蚀性介质和含磨粒介质等的密封。但其缺点有:①机械密封结构较复杂,对制造加工要求高;②机械密封安装与更换比较麻烦,并要求工人有一定的安装技术水平;③发生偶然性事故时,机械密封处理较困难;④机械密封一次性投资高。

2机械密封的腐蚀类型

2.1金属环腐蚀第一,表面均匀腐蚀。如果金属环表面接触腐蚀介质,而金属本身又不耐腐蚀,就会产生表面腐蚀,其现象是泄漏、早期磨损、破坏、发声等。第二,应力腐蚀破裂。金属在腐蚀和拉应力的同时作用下,首先在薄弱区产生裂缝,进而向纵深发展,产生破裂,称为应力腐蚀破裂,选用堆焊硬质合金及铸铁、碳化钨、碳化钛等密封环,容易出现应力腐蚀破裂。密封环裂纹一般是径向发散型的,可以是一条或多条。这些裂缝沟通了整个密封端面,加速了端面的磨损,使泄漏量增加。

2.2非金属环腐蚀第一,石墨环腐蚀。用树脂浸渍的不透性石墨环,它的腐蚀有三个原因:一是当端面过热,温度大于180℃时,浸渍的树脂要折离石墨环,使环耐磨性下降;二是浸渍的树脂若选择不当,就会在介质中发生化学变化,也使耐磨性下降;三是树脂浸渍深度不够,当磨去浸渍层后,耐磨性下降。所以密封冷却系统的建立,选择耐蚀的浸渍树脂,采用高压浸渍,增加浸渍深度是非常必要的。第二,石墨环的氧化。在氧化性的介质中,端面在干摩擦或冷却不良时,产生350~40℃的温度能使石墨环与氧发生反应,产生CO2气体,可使端面变粗糙,甚至破裂。非金属环在化学介质和应力的同时作用下,也会破裂。第三,聚四氟乙烯(F4)密封环的腐蚀。F4填充如玻璃纤维、石墨粉、金属粉等以提高其耐温性、耐磨性。填充F4环的腐蚀主要是指填充的选择性腐蚀、溶出或变质破坏。例如在氢氟酸中,玻璃纤维分子热腐蚀,所以填充何物应视具体情况而定。

2.3辅助密封圈及其接触部位的腐蚀(1)辅助密封圈的腐蚀。橡胶种类不同,其耐蚀性亦不同。由于橡胶的腐蚀、老化,其失效的橡胶遭腐蚀后表面变粗糙且失去弹性,容易断裂。橡胶耐油性因品种而异,不耐油的橡胶易胀大、摩擦力增大,浮动性不好,使密封失效。橡胶与F4耐温性差,硅橡胶耐温性最好,可在200℃使用。(2)与辅助密封圈接触部位的腐蚀。机械密封动环、轴套、静环、静环座,与橡胶或F4辅助密封圈接触处没有大的相对运动,该处液相对静止易形成死角,给与之接触的金属轴套、动环、静环座及密封体等造成了特种腐蚀,主要有缝隙腐蚀、摩振腐蚀、接触腐蚀,三种腐蚀同时存在,交替进行,所以腐蚀面较宽、较深。观察其表面深度在1-1.5倍密封圈直径,蚀度不小于0.01mm时,密封泄漏就严重了。

3防护方法

3.1选材设计者最清楚产品或零件的用途、位置及所处环境,因此设计者在进行结构设计时应选择适合的材料,同时对产品或工件的表面涂层进行设计,在图纸上提出相应的表面处理方法及技术要求。当然,这要求设计人员必须对不同材料或不同涂层、镀层的防腐蚀性能、适用场合、工艺性及经济性等熟悉。比如,容易发生点蚀的工件可选用耐点蚀的合金材料,或对表面进行钝化处理,提高材料的稳定性;为防止缝隙腐蚀或电偶腐蚀的发生,可在接合面上涂上油漆,避免缝隙部位金属裸露或避免不同金属的直接接触。过去推土机的管夹都是普通薄板制作,两三年就可能严重锈蚀,对软管失去固定作用,导致软管与其它零件发生摩擦磨损,最终导致液压系统漏油。采用不锈钢材料后,寿命增加,避免了类似问题的发生。

3.2结构设计工程机械产品在整体布置上要考虑防止腐蚀介质的积聚,尽量避免封闭区域,或保持封闭系统通风和排水良好,如考虑整车的通风、散热,发动机尾气排放要通过净化、降温等;在外形设计上注意防护,避免积存水汽和尘土。注意外露件的保护,电器件与接头布置在内侧,或加防护罩壳。整车外露易腐蚀和易进水的部位设防尘罩。零部件设计时考虑其均匀腐蚀,选择一种或几种组合防腐方式。

(1)在设计中尽量采用圆角或在可能时规定磨圆拐角,整个设计都应考虑到便于对拐角处的打磨。(2)由于表面灰尘会引起金属的腐蚀,因此应避免装配后工件表面积存灰尘。(3)对于外露面或可以进入风雨的部位,尽量不采用点焊,而应该采用连续焊,不仅美观,而且防腐蚀效果好,能防止缝隙腐蚀的发生。而且,对于表面形状来说,对接的防腐蚀性能比搭接要好。(4)焊缝经过打磨和清理,会大大改善表面状态,提高防腐蚀能力。而且,对工件表面尽可能要求清理,使表面无焊渣、焊疤、焊瘤等表面缺陷。

3.3维护与使用建立封液及冷却系统,并经常更换封液及冷却液,加强对端面冷却。检修与安装时,严禁敲击密封件,以防止局部相变而为腐蚀提供条件。密封件安装前,应严格地清洗干净。

篇4:设备用液压油异常泄漏应急措施程序

1.目的

确保公司液压设备的安全使用,防止或杜绝液压设备异常泄漏对人体的伤害及对环境的污染。

2.适用范围

适用于公司注塑机及其它液压设备的使用和管理。

3.职责

3.1采购和仓库负责本部门的液压油的购买、贮存、废弃管理,并制定液压油的使用和应急

措施制度。

3.2各车间负责本部门液压设备的使用和管理。

4.液压油容易泄漏的位置

4.1注塑机机台背后液压油管处。

4.2油管阀门、及盘根片。

5.液压油泄漏发生原因

5.1压力过高

5.2阀门或管材材质不良

5.3人为不小心破坏

5.4异常操作造成

6.应急措施

6.1注塑机在使用前,需运行、安装、调试人员一道认真检查,确认液压系统的状态,确认无误后才可开机。

6.2在作业过程中,应监视和控制油压,避免发生意处泄漏。

6.3在设备保养时应重点对液压系统进行保养,保养人员要熟悉系统阀门的使用情况,发现

问题需立即汇报,并立即处理。

6.4对系统的泄漏点,应立即向上级汇报,并按照处理预案及时处理,若发现大量泄油时,

应立即停机,停止液压系统的运行,隔离泄漏点,并组织人员及时清理漏油,处理泄漏

6.5发生意外,采取应急措施后必须形成记录,并进行原因分析。

6.6材料准备:足够的破布,大小油桶,合格的阀门密封材料。

篇5:工程机械液压系统内泄漏故障原因预防措施

1引言随着公路事业的迅速发展,工程机械的品种和数量越来越多,对工程机械的要求也越来越高。液压传动以运动传递平稳、均匀,容易获得大的力和力矩,单位功率质量轻、体积小、结构紧凑,反应灵敏、操作简单,易于实现自动化,自动润滑,标准化程度高,元件寿命长等优点,被广泛应用于工程机械中。而液压传动又有对液压油要求高、液压元件价格高、液压设备故障原因不易查找等缺点,在使用过程中一旦出现故障,则很难准确诊断,尤其是内泄漏故障,既看不见,又摸不着,没有一定的经验和诊断技术更是很难确诊。因此,对于液压系统内泄漏引起的故障,维修人员往往不知所措,盲目乱拆或“头疼拿脚医”的情况时有发生,甚至在“乱拆”工作中造成零部件的变形和损伤,给使用单位造成工作被动及一定的经济损失。当费尽周折找到内泄漏故障的部位时,人们通常采用以提高液压元件的几何尺寸精度,表面粗糙度和加强密封以及换件的方法来处理内泄漏问题,而未采取有效防范措施。事隔不久,势必再次发生内泄漏故障,造成较大的浪费和损失。为了进一步做好这些大型贵重设备的使用与维护,延长其使用寿命,使用单位必须重视液压系统的维护管理,必须研究分析找出内泄漏故障的根本原因,采取“对症下药”的防治措施。2液压系统出现内泄漏故障的危害及机理分析为了减少零件的磨损,两运动零件表面之间必须具有间隙,因此产生液体的泄漏,而间隙密封是一种最简单而应用最广泛的密封方法。液压系统中存在着很多的间隙密封,由于设计、制造和装配误差、磨损不均和元件在工作中的变形等而产生缝隙,它们因摩擦磨损而逐渐增大。当油液流经这些缝隙时,必然引起泄漏量加大,直接影响工程机械的正常运用,并造成工程机械操作失灵、运转异常、效率降低、寿命缩短等,带来经济上的损失,甚至发生安全事故,因此必须采用有效的方法来防止。在液压传动中,常见缝隙形式有两种:一种是由两个平面形成的平面缝隙,如柱塞泵的缸体与配流盘;另一种是由内外圆柱表面形成的环状缝隙,如柱塞泵的柱塞和柱塞孔。油液经过小孔和缝隙的泄漏量究竟有多大呢?一般来讲,液压系统中主要的缝隙及泄漏量是:(1)楔形缝隙。这主要是因两配合平面间平行度低,磨损不均或装配不当而形成的。由该缝隙引起的泄漏量为式中:Q1——泄漏量ΔP——缝隙两端压力差B——与油液流速垂直方向缝隙宽度尺寸h1、h2——入口和出口缝隙高度,且h1

制度专栏

返回顶部
触屏版电脑版

© 制度大全 qiquha.com版权所有